EAST AFRICAN STANDARD

Barley grains — Specification and grading
Foreword

Development of the East African Standards has been necessitated by the need for harmonizing requirements governing quality of products and services in East Africa. It is envisaged that through harmonized standardization, trade barriers which are encountered when goods and services are exchanged within the Community will be removed.

In order to meet the above objectives, the EAC Partner States have enacted an East African Standardization, Quality Assurance, Metrology and Test Act, 2006 (EAC SQMT Act, 2006) to make provisions for ensuring standardization, quality assurance, metrology and testing of products produced or originating in a third country and traded in the Community in order to facilitate industrial development and trade as well as helping to protect the health and safety of society and the environment in the Community.

East African Standards are formulated in accordance with the procedures established by the East African Standards Committee. The East African Standards Committee is established under the provisions of Article 4 of the EAC SQMT Act, 2006. The Committee is composed of representatives of the National Standards Bodies in Partner States, together with the representatives from the private sectors and consumer organizations. Draft East African Standards are circulated to stakeholders through the National Standards Bodies in the Partner States. The comments received are discussed and incorporated before finalization of standards, in accordance with the procedures of the Community.

Article 15(1) of the EAC SQMT Act, 2006 provides that “Within six months of the declaration of an East African Standard, the Partner States shall adopt, without deviation from the approved text of the standard, the East African Standard as a national standard and withdraw any existing national standard with similar scope and purpose”.

East African Standards are subject to review, to keep pace with technological advances. Users of the East African Standards are therefore expected to ensure that they always have the latest versions of the standards they are implementing.

© East African Community 2010 — All rights reserved

East African Community
P O Box 1096
Arusha
Tanzania
Tel: 255 27 2504253/8
Fax: 255-27-2504481/2504255
E-Mail: eac@eachq.org
Web: www.each.int

© 2010 EAC — All rights of exploitation in any form and by any means reserved worldwide for EAC Partner States’ NSBs.
Introduction

In the preparation of this East African Standard, the following sources were consulted extensively:

Cereals Grading and Marking Rules, 2001, Ministry of Agriculture, Government of India, Schedule VI, *Grade Designation and Definition of Quality of Barley*

Barley, Official Grain Grading Guide, August 1, 2009, Canadian Grain Commission

Ethiopian Standard, ES 658:2001, Food barley — Specification

CODEX STAN 193:1995 (Rev.5:2009), General Standard for Contaminants and Toxins in Foods

CODEX STAN 228:2001 (Rev.1:2004), General methods of analysis for contaminants

Codex Alimentarius website: http://www.codexalimentarius.net/mrls/pestdes.jsp/pest_q-e.jsp

USDA Foreign Agricultural Service website: http://www.mrldatabase.com

USDA Agricultural Marketing Service website: http://www.ams.usda.gov/AMSv1.0/Standards

European Union: http://ec.europa.eu/sanco_pesticides/public

Assistance derived from these sources and others inadvertently not mentioned is hereby acknowledged.

This standard has been developed to take into account:

— the needs of the market for the product;

— the need to facilitate fair domestic, regional and international trade and prevent technical barriers to trade by establishing a common trading language for buyers and sellers.

— the structure of the CODEX, UNECE, USA, ISO and other internationally significant standards;

— the needs of the producers in gaining knowledge of market standards, conformity assessment, commercial cultivars and crop production process;

— the need to transport the product in a manner that ensures keeping of quality until it reaches the consumer;

— the need for the plant protection authority to certify, through a simplified form, that the product is fit for crossborder and international trade without carrying plant disease vectors;

— the need to promote good agricultural practices that will enhance wider market access, involvement of small-scale traders and hence making farming a viable means of wealth creation

— the need to ensure a reliable production base of consistent and safe crops that meet customer requirements.
CD/K/457:2010

Contents

1 Scope .. 1
2 Normative references .. 1
3 Definitions and grading factors .. 1
4 Essential composition and quality factors .. 14
4.1 General quality requirements ... 14
4.2 General purpose barley grades ... 15
4.3 Malt barley grades .. 17
4.4 Feed barley grades ... 18
5 Contaminants .. 19
5.1 Pesticide residues ... 19
5.2 Heavy metals ... 19
5.3 Mycotoxin and chemical limits ... 19
5.4 Environment .. 20
6 Hygiene .. 20
7 Packaging ... 20
8 Marking or labelling .. 20
9 Sampling and methods of analysis ... 21
9.1 General ... 21
9.2 Sampling ... 21
9.4 Moisture assessment of cereals — Brabender oven reference method 24
9.5 Moisture assessment of cereals — NIR .. 26
9.6 Protein assessment of cereals — Dumas reference method ... 26
9.7 Protein assessment of cereals — NIR ... 28
9.8 Test weight assessment — Schopper Chondrometer reference method 28
9.9 Test weight assessment — Franklin Mark 11 Chondrometer reference method 30
9.10 Test weight assessment — Kern 222 Chondrometer reference method 31
9.11 Unmillable material assessment (screenings) — Reference method 32
9.12 Retention — Reference method ... 33
9.13 Falling number — Reference method ... 34
9.14 Rapid visco analyser — Reference method ... 35
9.15 Germinative energy — Reference method .. 37
9.16 Germinative capacity rapid staining method — Reference method 38
9.17 Defective grains assessment — Reference method ... 39
9.18 Contaminants assessment — Reference method ... 40
9.19 Varietal declaration procedure ... 43
9.20 Screen slot size compliance procedure .. 44
Annex A (normative) Determination of impurities, size, foreign odours, insects, and species and variety ... 47
Annex B (normative) Determination of moisture content ... 48
Annex C (informative) Model certificate of conformity with standards for farm produce 49
Annex D (normative) Barley — Fact sheets ... 50
Annex E (informative) Barley — Codex, EU and USA pesticide residue limits 52
Annex F (informative) Sieves for assessing dockage and grading factors 58
Barley grains — Specification and grading

1 Scope

This East African Standard specifies the quality and grading requirements and methods of test for barley grains of varieties (cultivars) grown from *Hordeum vulgare* Lin and *Hordeum bulbosum* intended for human consumption, malting and animal feed. It does not apply to other products derived from barley grains.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 605, *Pulses — Determination of impurities, size, foreign odours, insects, and species and variety — Test methods*

ISO 711, *Cereals and cereal products — Determination of moisture content (Basic reference method)*

ISO 712, *Cereals and cereal products — Determination of moisture content — Routine reference method*

ISO 5223, *Test sieves for cereals*

ISO 6639-1, *Cereals and pulses — Determination of hidden insect infestation — Part 1: General principles*

ISO 6639-2, *Cereals and pulses — Determination of hidden insect infestation — Part 2: Sampling*

ISO 6639-4, *Cereals and pulses — Determination of hidden insect infestation — Part 4: Rapid methods*

ISO 13690, *Cereals, pulses and milled products — Sampling of static batches*

ISO 16050, *Foodstuffs — Determination of aflatoxin B\textsubscript{1}, and the total content of aflatoxin B\textsubscript{1}, B\textsubscript{2}, G\textsubscript{1} and G\textsubscript{2} in cereals, nuts and derived products — High performance liquid chromatographic method*

CAC/RCP 1, *Recommended international code of practice — General principles of food hygiene*

EAS 38, *Labelling of prepackaged foods — Specification*

EAS 79, *Cereals and pulses as grain — Methods of sampling*

EAS 217, *Methods for the microbiological examination of foods*

ISO 22000, *Food safety management systems — Requirements for any organization in the food chain*

OIML R87, *Quantity of product in prepackages*

3 Definitions and grading factors

For the purpose of this East African Standard, the following definitions shall apply.
3.1 barley grain
the dried grain that, before the removal of dockage, consists of 50 percent or more of whole kernels of cultivated barley (*Hordeum vulgare* L. and *Hordeum bulbosum* L.) and not more than 25 percent of other grains for which standards have been established.

3.2 whole grains
these are grains of barley obtained after proper threshing with no mechanical treatment.

3.3 adhered hulls
kernels of hulless varieties with hulls that have not been removed during harvesting. See Varieties with adhered hulls.

3.4 barley of other types
in two-row barley, barley of other types is any six-row variety. In six-row barley, barley of other types is any two-row variety.

3.5 black barley
barley with black hulls.

3.6 broken kernels
refers to barley that is mechanically damaged due to the harvesting or handling process with a quarter or more of the grain missing. May also be referred to as Cracked and Broken.

3.7 cereals
in the context of this standard, cereals refer to wheat, barley, oats, cereal rye, triticale, sorghum, maize and rice.

3.8 cereal smuts
include all smuts on all cereal grains. This includes but is not limited to:

— ball smut — Are those infected by the spores of the fungus *Tilletia caries*. They have the appearance of pale, plump, slightly oversized grains. These grains are easily crushed between the fingers and contain a mass of black powder (spores) with a distinctive rotten egg smell. This may also be called *stinking smut* or *bunt*.

— covered smut — Covered smut is caused by various fungi of *Ustilago* spp.

— loose smut — Loose smut is the result of the fungus *Ustilago tritici* developing in the barley heads during the growing phase. The tolerance applies to the number of pieces of backbone in the sample.

A nil tolerance applies to all smuts in kernels.

3.9 chemicals not approved for barley
refers to the following:

— chemicals used on the growing crop in contravention of the label
— chemicals used on stored barley in contravention of the label
— chemicals not registered for use on barley
— barley containing any artificial colouring, pickling compounds or marker dyes commonly used during crop spraying operations that have stained the barley
— barley treated with or contaminated by carbaryl, organochloride chemicals, or diatomaceous earth
— chemical residues in excess of legal limits
3.10 classes

barley is divided into three classes based on end use, malting, hulless and general purpose:

(a) malting

malt class barley is highly desired for the malting process which involves a controlled process where barley has been allowed to sprout for use chiefly in brewing and distilling. The class malting barley is divided into the following three subclasses:

(i) **Six-rowed malting barley.** Barley that has a minimum of 95.0 percent of a six-rowed suitable malting type that has 90.0 percent or more of kernels with white aleurone layers that contains not more than 1.9 percent injured-by-frost kernels, 0.4 percent frost-damaged kernels, 0.2 percent injured-by-heat kernels, and 0.1 percent heat-damaged kernels. Six-rowed Malting barley shall not be infested, blighted, ergoty, garlicky, or smutty. A head of six-row barley contain six rows of kernels along its length, in two groups of three kernels each.

(ii) **Six-rowed blue malting barley.** Barley that has a minimum of 95.0 percent of a six-rowed suitable malting type that has 90.0 percent or more of kernels with blue aleurone layers that contains not more than 1.9 percent injured-by-frost kernels, 0.4 percent frost-damaged kernels, 0.2 percent injured-by-heat kernels, and 0.1 percent heat-damaged kernels. Six-rowed blue malting barley shall not be infested, blighted, ergoty, garlicky, or smutty.

(iii) **Two-rowed malting barley.** Barley that has a minimum of 95.0 percent of a two-rowed suitable malting type that contains not more than 1.9 percent injured-by-frost kernels, 0.4 percent frost-damaged kernels, 0.2 percent injured-by-heat kernels, 0.1 percent heat-damaged kernels, 0.9 percent injured-by-mould kernels, and 0.1 percent mould-damaged kernels. Two-rowed malting barley shall not be infested, blighted, ergoty, garlicky, or smutty. A head of two-row barley contains two rows of kernels along its length. It is generally recognised that two-row barley is best suited for malting and six-row barley is only suitable for feed purposes.

(b) hulless

hulless barley is used primarily for animal feed, but it is also marketed for human consumption. Hulless varieties have a very loose hull which is usually removed during harvesting.

(c) general purpose barley

general purpose class include barley not selected for malting usually denoted as “barley”. The class Barley is divided into the following three subclasses:

(i) **Six-rowed barley.** Any six-rowed barley that contains not more than 10.0 percent of two-rowed varieties.

(ii) **Two-rowed barley.** Any two-rowed barley with white hulls that contains not more than 10.0 percent of six-rowed varieties.

(iii) **Barley.** Any barley that does not meet the requirements for the subclasses six-rowed barley or two-rowed barley.

3.11 coloured aleurone layer

to refer to barley grains which have a coloured aleurone layer in the kernel. The colour is generally blue or black. Also includes black hulled varieties.

3.12 contaminants

contaminants may generally be referred to as foreign matter and may consist of: Cereal Ergot; Chemicals not Approved for Barley; Coloured Aleurone Layer; Earth; Field Insects – All Others; Field Insects – Sitona Weevil; Foreign Grain (Wheat, Cereal Rye, Triticale, Cultivated Oats, Rice); Foreign Material; Foreign Seeds; Objectionable Material; Pickling Compounds; Ryegrass Ergot; Sand; Six row barley; Smut; Snails; Stored Grain Insects and Pea Weevil – Dead; Stored Grain Insects and Pea Weevil – Live; Varietal Purity; Wild Oats / Wild Radish
3.13 damaged kernels
kernels, pieces of barley kernels, other grains, and wild oats that are badly ground-damaged, badly
weather-damaged, diseased, frost-damaged, germ-damaged, heat-damaged, injured-by-heat, insect-
bored, split or cleaved, skinned, mould-damaged, dry green or sappy, shot or sprout-damaged, dark
tipped, or otherwise materially damaged. An individual kernel may have more than one defect.

3.14 dark tipped
refers to staining caused by excess moisture and / or humidity or a stress related biochemical reaction
towards the end of the growing period and into harvest. This mainly occurs at the germ end of the
grain. Dark tipping equal to or greater than 1 mm is classified as defective grain.

3.15 dockage
all matter other than barley that can be removed from the original sample by use of an approved
device and procedure. Also, underdeveloped, shrivelled, and small pieces of barley kernels removed
in properly separating the material other than barley and that cannot be recovered by properly
rescreening or recleaning.

3.16 dry basis
barley protein is measured as a percentage by weight on a dry moisture basis i.e. 0% moisture.

3.17 dry green or sappy
— green grains arising from harvesting of grain before it has matured. Dry green grains are those
whose surface is distinctively green or those grains when cut show an intense green colour in the
cross-section. Dry green grains are usually dry and hard.
— sappy grains are those that have been harvested before maturity. Sappy grains are generally soft
when pressed. They may or may not be green. Any level of sappiness is classified as defective.

3.18 earth pellets
Earth is defined as a clod of dirt, being 5mm or less in diameter.
— Hard earth pellets are pellets that do not crumble under light pressure. See Stones.
— Soft earth pellets are pellets that crumble under light pressure. See Soft earth pellets.

3.19 ergot
Ergot is a plant disease producing elongated fungus bodies with a purplish-black exterior, a purplish-
white to off white interior, and a relatively smooth surface texture when cereals and ryegrass kernels
are infected by the fungus Claviceps purpurea.

3.20 falling number
a grain quality test which measures the degree of weather damage in barley and is based on the
unique ability of alpha amylase (an enzyme released during seed germination) to liquefy a starch gel.
Strength of the enzyme is measured by Falling Number defined as the time in seconds required to stir
plus the time it takes to allow the stirrer to fall a measured distance through a hot aqueous flour or
meal gel undergoing liquefaction. The Falling Number test is an alternative to the Rapid Visco
Analyser (RVA).

3.21 fertilizer pellets
Fertilizer pellets are typically either small, round and white or irregular shaped and pink or red.
Fertilizer pellets are not considered a hazardous substance however there is no visible means of
assuring that material resembling fertilizer pellets is not some other contaminant.
3.22 field fungi
individual kernels affected by the mould *Cladisporium* spp. *Cladisporium* spp. gives the grain the appearance of black spotting occurring anywhere on the grain. The mould usually occurs during periods of high moisture or high humidity towards the end of the growing period into harvest.

3.23 field insects
these are insect contaminants of grain that do not cause damage to stored grains. They include but are not restricted to: Desiantha Weevil (*Desiantha* spp); Fungus beetle (*Corticaria punctulata*); Grasshoppers; Hairy Fungus Beetle (*Typhaea stercorea*); Ladybirds; Minute Mould Beetle (*Corticaria* spp); Mites (*Acarina* spp); Sitona Weevil (*Sitona* spp); Sitona Weevil (*Sitona* spp); Wood Bugs Tolerances apply to either live or dead field insects. For grasshoppers, six legs, three body parts and two wings or part thereof, constitutes one insect. More than one of the same body part constitutes greater than one insect. Note that a separate tolerance exists for Sitona Weevils to all other field insects.

3.24 fireburnt kernels
kernels charred or scorched by fire. A cross-section of a fireburnt kernel resembles charcoal with numerous air holes. The air holes result in a low weight kernel which crumbles easily under pressure.

3.24 foreign grain
wheat, cereal rye, triticale, cultivated oats and rice grains only, for which a separate tolerance applies. Other cereal grains, pulses and oilseeds are considered as foreign seeds.

3.25 foreign matter
all matter other than barley, other grains, and wild oats that remains in the sample after removal of dockage

3.26 foreign seeds
seeds of any plant, other than the species of crop being tendered for delivery. Foreign Seeds are classified into two broad groups; those with specific tolerances listed in this standard, and those without. The latter are termed “Small Foreign Seeds”. Seeds with specific tolerances have been categorised into several groups. These are:

Type 1
- Colocynth (*Citrullus colocynthis*)
- Poppy (Field) (*Papaver rhoesas*)
- Poppy (Horned) (*Glaucium flavum*)
- Jute (*Corchorus olitorius*)
- Long Head Poppy (*Papaver dubium*)
- Mexican Poppy (*Argemone mexicana*)
- New Zealand Spinach (*Tetragonia tetragonoides*)
- Parthenium Weed (*Parthenium hysterophorus*)
- Saffron Thistle (*Carthamus lanatus*)
- Wild Poppy (*Papaver hybridum*)

Type 2
- Barley with Coloured Aleurone Layer (blue / black) (Malt grades only)
- Branched Broomrape (*Orobanche ramosa*)
- Castor Oil Plant (*Ricinus communis*)
- Coriander (*Coriandrum sativum*)
- Crow Garlic/ Wild Garlic (*Allium vineale*)
- Darling Pea (*Swainsona spp*)
Opium Poppy (*Papaver somniferum*)
Peanut seeds and pods (*Arachis hypogaea*)
Ragweed (*Ambrosia sp*)
Rattlepods (*Crotalaria sp*)
St. John's Wort (*Hypericum perforatum*)
Starburr (*Acanthospermum hispidum*)

Type 3a
Bathurst Burr (*Xanthium spinosum*)
Bellvine (*Ipomoea plebeia*)
Bulls Head / Caltrop / Cats Head (*Tribulus terrestris*)
Cape Tulip (*Homeria spp*)
Cottonseed (*Gossypium spp*)
Dodder (*Cuscuta spp*)
Noogoora Burr (*Xanthium pungens*)
Thornapple (*Datura spp*)

Type 3b
Vetch (Commercial) (*Vicia spp*)
Vetch (Tare) (*Vicia sativa*)

Type 3c
Heliotrope (Blue) (*Heliotropium amplexicaule*)
Heliotrope (Common) (*Heliotropium europaeum*)
Note included in this Type are tolerances for both seeds and pods.

Type 3d
Double Gees / Spiny Emex / Three Cornered Jack (*Emex australis*)

Type 4
Bindweed (Field) (*Convolvulus arvensis*)
Cut-leaf mignonette seeds or pods (*Reseda lutea*)
Darnel (Drake Seed) (*Lolium temulentum*)
Hexham Scent / King Island Melilot (*Melilotus indicus*) acceptable only if free from taint odour
Hoary Cress (*Cardaria draba*)
Mintweed (*Salvia reflexa*)
Nightshades (*Solanum spp*)
Paddy Melon (*Cucumis myriocarpus*)
Skeleton Weed (*Chondrilla juncea*)
Variegated Thistle (*Silybum marianum*)

Type 5
Knapweed (Creeping / Russian) (*Acroptilon repens*)
Paterson's Curse / Salvation Jane (*Echium plantagineum*)
Sesbania Pea (*Sesbania cannabina*)

Type 6
Colombus Grass (*Sorghum almum*)
Johnson Grass (*Sorghum halepense*)

Type 7a
Broad Bean (*Vicia faba*)
Chickpeas (*Cicer arietinum*)
Clover pods (*Trubioliun spp*)
Corn (Maize) (*Zea mays*)
Cowpea (*Vigna unguiculata*)
Faba Beans (*Vicia faba*)
Lentils (*Lens culinaris*)
Lupin (*Lupinus spp*)
Medic Pods (*Medicago spp*)
Peas (Field) (*Pisum sativum*)
Safflower (*Carthamus tinctorius*)
Soybean (*Glycine max*)
Sunflower (*Helianthus annuus*)
And any other seeds or pods greater than 5mm in diameter

Type 7b
6 row barley
Bindweed (Australian) (*Convolvulus erubescens*)
Bindweed (Black) (*Polygonum convolvulus*)
Brome Grass (*Bromus spp*)
Muskweed (*Myagrum perfoliatum*)
Onion weed (*Asphodelus fistulosus*)
Phalaris glumes (*Phalaris spp*)
Poverty weed (*Calocephalus sonderi*)
Ryegrass on stalk
Sheep weed (*Chondrilla juncea*)
Sorghum (Grain) (*Sorghum bicolor*)
Three horn bedstraw (*Galium tricornutum*)
Turnip Weed (*Rapistrum rugosum*)

Type 7b includes any other Foreign Seeds not specified in Types 1 - 7a, in Small Foreign Seeds or listed elsewhere within these Standards.

Other categories
Other Foreign Seed categories exist, being:

- Wheat, Cereal Rye, Triticale, Cultivated Oats, Rice (often referred to as Foreign Grain)
- Wild Oats and Wild Radish Pods
- Barley with Coloured Aleurone Layer (blue / black) (Feed grades only)

All Foreign Seed Pods not listed above such as those that are 5mm or less in diameter are included as Foreign Material, whether whole pods or part thereof.

3.27 [frost damaged](#)

Grain damaged as a result of frost during the maturation phase. Frost damaged barley grains appear pinched and sunken in on the back, usually on the awn half of the grain. In severe cases the kernel under the husk will appear orange. For hulless varieties—frost-damaged kernels have severe wrinkling and translucent endosperms.

3.28 [fusarium damage](#)

Kernels of barley discoloured by pink, orange or black encrustations of fusarium mould. Under magnification, the black encrustations appear raised above the surface of the kernel and are surrounded by a white mould. The black encrustations can be scraped off. Some degree of judgment is required when identifying kernels with the fusarium mould. Only those kernels which meet this description are to be designated as fusarium damaged.

3.29 [germ-damaged kernels](#)

Kernels, pieces of barley kernels, other grains, and wild oats that have dead or discoloured germ ends.

3.30 [germinative capacity](#)

A measure of the barley grains capability to germinate while still in dormancy. It is usually measured in the laboratory to assess germination of potential late malt deliveries. Germinative capacity is also referred to as viability.

The methods used are based on the following IOB (Institute of Brewing) Methods (January 2007):
3.31 germinative energy
measures the germination of barley grains within a 24 hour period using a method of analysis based on the following IOB method (January 2007):

3.32 heat damaged, bin burnt or storage mould affected

(a) heat damaged, bin burnt — Heat Damaged or Bin Burnt refers to those kernels that have become discoloured due to exposure to severe heat during storage or an incorrect artificial drying technique. Affected grains appear reddish/golden brown, or in severe cases, blackened.

(b) storage mould affected — Storage Mould Affected refers to kernels that have become affected by the development of fungi or bacteria due to an increase in grain moisture levels during storage. Affected grains appear discoloured and visibly affected by mould.

The above defective grains may become damaged to the extent that they may be referred to as Rotted. Rotted grains are included in the definition for Heat Damaged, Bin Burnt or Storage Mould Affected. Rotted grains are those that have become severely affected by the development of fungi or bacteria due to high moisture conditions. Individual grains appear distinctly discoloured by mould and are swollen and soft. Affected grains will feel spongy under pressure and/or emit a mouldy odour.

3.33 hit and miss
refers to the sequence of slots on the screen when viewing along a row facing the direction of the slots. That is, the screen in made of a series of slots and “no slots” in sequence equidistant.

3.34 immature and shrivelled grains
grains that are not properly developed

3.35 injured-by-frost kernels
kernels and pieces of barley kernels that are distinctly indented, immature, or shrunken in appearance or that are light green in colour as a result of frost before maturity

3.36 injured-by-heat kernels
kernels, pieces of barley kernels, other grains, and wild oats that are slightly discoloured as a result of heat

3.37 injured-by-mould kernels
kernels and pieces of barley kernels containing slight evidence of mould

3.38 insect damaged
grains eaten in part by stored grain insects and any field pests of grains. Grains may have a hole (commonly referred to as bored) or have a chewed appearance on any part of the grain.

3.39 inseparable seeds
seeds not removed by the cleaning process, usually large seeds
3.40 mildew
a fungal condition that develops in unthreshed grain usually under conditions of excessive moisture.
The affected kernels are greyish in colour and lower in quality. In the evaluation of mildew, consider
the number of affected kernels and their severity. See severe mildew.

3.41 moisture
the amount of water present in the sample as determined by the appropriate analytical method

3.42 mould-damaged kernels
kernels, pieces of barley kernels, other grains, and wild oats that are weathered and contain
considerable evidence of mould.

3.43 nil
a level of zero in a half litre sample representative of the entire load and/or not detected in the load or
in/on the delivery vessel at any stage of the receival process

3.44 objectionable material
refers to objectionable foreign matter that may or may not be otherwise stated in this standard which
has the ability to degrade the hygiene of barley, become a food safety issue of concern or has a
commercially unacceptable odour. This includes but is not limited to the following:

(a) Animal material — meat meal, bone meal, poultry offal, meal or any other animal proteins.
Animal material also includes carcasses of dead animals such as rats and mice.
(b) Odour — A commercially unacceptable odour is defined as a sour or musty or other
objectionable odour emanating from the barley which is not natural or normally associated with
barley. Odour may be caused by various means which may or may not be physically
discernable in the sample being assessed.
(c) Stick — ligneous material greater than 1cm in length and 0.5cm in diameter. Note that crop
stubble greater than 3cm in length and 1cm in diameter is defined as a stick.
(d) Tainting agent — A Tainting agent is any contaminant that imparts a smell or taint to barley. It
includes but is not limited to plant parts and seeds of Eucalyptus spp.
(e) Stone — A Stone or gravel is defined as a lump or mass of hard consolidated mineral matter
being greater than 2mm in length or diameter. Smaller material is defined as sand.
(f) Water — The addition of water to grain prior to delivery is a prohibited practice.
(g) Other — This refers to any other commercially unacceptable contaminant such as animal
excreta, glass, concrete, fertiliser or metal.

3.45 pea weevil
insects of the species Bruchus pisorum. The tolerance applies to all life stages of the insect. As pea
weevils are commonly found inside field pea seeds, it is recommended that a number of field peas
present in a load of grain should be broken and assessed for the presence of this insect. Note that a
separate tolerance applies to Live and Dead Pea Weevils.

3.46 pickling compounds
chemicals added to grain as a seed treatment or as a seed dressing prior to sowing. They are usually
associated with a colouring agent. Grains contaminated in this way may be identified by an unnatural
surface colour and/or colour that rubs off. Pickling compounds include but are not limited to
fenaminosulf, triadimenol, carboxin, flutriafol, bitertanol and any other fungicide added to the grain as
a seed treatment.
3.47 plump barley
barley that remains on top of a 6/64 x 3/4 slotted-hole sieve after sieving according to approved procedures

3.48 poisonous, toxic and/or harmful seeds
any seed which if present in quantities above permissible limit may have damaging or dangerous effect on health, organoleptic properties or technological performance such as Jimson weed — dhatura (D. fastuosa Linn and D. stramonium Linn.) corn cockle (Agrostemma githago L., Machai Lallium remulenum Linn.) Akra (Vicia species), Argemone mexicana, Khesari and other seeds that are commonly recognized as harmful to health

3.49 protein
proteins (amino acids arranged in a linear chain) form a large component part of grains. These structures are responsible for the quality expressions in end use products made from barley.

3.50 Rapid Visco Analyser (RVA)
a grain quality test which measures the degree of pre harvest germination of malting barley and is based on the ability of the enzymes alpha amylase and (1,3 and 1,4) beta glucanase to be able to liquefy a starch gel. The strength of enzyme activity and therefore the degree of germination is measured by the RVA as defined by the force required to stir an aqueous barley meal mixture over a defined time period. The result of the RVA is a Stirring Number. The RVA is an alternative to the Falling Number test.

3.51 retention
the material retained above the 2.50mm screen after a sample of barley grain is subjected to the screening process

3.52 rotted kernels
kernels that are discoloured, swollen, soft and spongy as a result of decomposition by fungi or bacteria. Consider rotted kernels in combination with severely mildewed and heated.

3.53 sand grain
a particle of unconsolidated (loose), rounded to angular rock fragment or mineral grain between 0.06mm and 2.00mm in diameter. Smaller material is classified under Foreign Material. Larger material is classified as Earth or Stones.

3.54 sclerotinia sclerotiorum
a fungus producing hard masses of fungal tissue, called sclerotia. The sclerotia vary in size and shape, have a course surface texture, vary in exterior colour from dark black to gray to white and have a pure white interior.

3.55 screenings
See “Unmillable Material below the Screen”.

3.56 severely mildewed
kernels that are severely blackened by mildew. See Mildew. Consider severe mildew in combination with rotted and heated kernels.
3.57 sieves

(a) 1.98 mm x 19.05 mm slotted-hole sieve — A metal sieve 0.81 mm thick with slotted perforations 1.98 mm by 19.05 mm.

(b) 2.18 mm x 19.05 mm slotted-hole sieve — A metal sieve 0.81 mm thick with slotted perforations 2.18 mm by 19.05 mm.

(c) 2.38 mm x 19.05 mm slotted-hole sieve — A metal sieve 0.81 mm thick with slotted perforations 2.38 mm by 19.05 mm.

3.58 skinned and broken kernels
barley kernels that have one-third or more of the hull removed, or that the hull is loose or missing over the germ, or broken kernels, or whole kernels that have a part or all of the germ missing. Each grain exhibiting one of more of the following characteristics is assessed as a skinned grain:

— Awn skinning — Greater than a third of the husk from the awn end towards the centre of the grain has been removed.

— Chipped — Approximately one third of the grain has been removed at the awn end of the grain.

— Germ exposed — The husk is removed from the germ end of the grain or the germ itself has been removed.

— Pearled — The entire husk has been removed.

— Side or back skinning — One third or more of the husk is missing from the side or the back of the grain.

— Split backs — The husk is split along the length of the centre ridge of the back of the grain.

— Split skirt — The husk is split along the centre or side edges, on the back of the grain, at the germ end.

3.59 small foreign seeds
all small foreign seeds in the unmillable material fraction which have fallen below the screen during the screening process, except those specifically mentioned in the Foreign Seeds definition.

3.60 snails
whole or substantially whole (more than half) snail shells, irrespective of size. These include but are not limited to: Common White Snail (Cernuella virgata); White Italian Snail (Theba pisana); Pointed Snail (Cochlicella actua); Small Pointed Snail (Cochlicella abarbara); Any other snail

3.61 soft earth pellets
— Earth pellets that crumble into fine dust under light pressure, using a finger only—if they do not crumble, they are considered Stones.

— Any non-toxic material of similar consistency

3.62 shot or sprouted
Barley grains exhibiting the following outward signs of having commenced germination are classified as Shot:

— Bursting of the grain at the germ end

— The husk has a distinct pin hole at the germ end and may have ‘tramlines’ where the husk has begun to lift on each side on the back of the grain at the germ end. Note that the tramlines must be on both sides
Sprouted grains are those with any visible evidence of root system beginning to emerge.

3.63
six row
barley varieties with six kernel rows in the head. It is generally recognised that two-row barley is best suited for malting and six-row barley is only suitable for feed purposes.

3.64
smuts
See cereal smut. Refers to all smut types of all cereals. Includes ball and covered smut.

3.65
sound barley
kernels and pieces of barley kernels that are not damaged as defined in this clause.

3.66
split or cleaved
This defect occurs where the split of the kernel has penetrated through the husk and into the endosperm. This internal split may have arisen due to a number of causes, including:

— Split or cleaved — Split or Cleaved barley is generally caused by rainfall events or rapid changes in moisture when grain is maturing. At this growth stage the grain may also be developing colour and is most susceptible to splitting. When grain begins to mature during hot dry periods, waxes begin to form on the outside of the grain and the husk begins to harden. The inside of the grain often begins to dry out but may still remain doughy. A sudden drop in temperature at this stage causes the husk and skin to harden further. Rain that falls after this event can be absorbed by the plant, and some will enter the grain causing a split along the crease. Alternatively the grain can burst at the husk which causes a split down the back, front or sides of the grain.

— hormone damaged — Hormone damaged barley grains are to be classified under the split or cleaved heading. The grains affected are much distorted, twisted and lack a traditional barley shape.

3.67
stones
hard shale, coal, hard earth pellets, and any other non toxic materials of similar consistency. Fertilizer pellets are assessed as stones when constituting 1.0% or less of the net sample weight.

3.68
stored grain insects
These are insects which cause damage to stored grain. These include: Angoumois Grain Moth (*Sitotroga cerealella*); Confused Flour Beetle (*Tribolium confusum*); Flat Grain Beetle (*Cryptolestes spp*); Granary Weevil (*Sitophilus granarius*); Indian Meal Moth (*Plodia interpunctella*); Khapra Beetle (*Trogoderma granarium*); Lesser Grain Borer (*Rhyzopertha dominica*); Maize Weevil (*Sitophilus zeamais*); Psocids/Book lice (*Psocoptera sp*); Rice Weevil (*Sitophilus oryzae*); Rust-red Flour Beetle (*Tribolium castaneum*); Saw Tooth Grain Beetle (*Oryzaephilus surinamensis*); Tropical Warehouse Moth (*Ephestia cautella*); Warehouse Beetle (*Trogoderma variable*)

NOTE A separate tolerance exists for dead and live Stored Grain Insects. The tolerance applies to all life stages of the insect.

For dead stored grain insects, pieces of insects that are not whole or not readily able to be identified by species are classified as foreign material.

3.69
test weight
the density of a measured volume of grain expressed in kilograms per hectolitre
3.70 thin barley grains

thin barley shall be defined for the appropriate class as follows:

(1) Malting barley — Six-rowed malting barley that passes through a 1.98 mm x 19.05 mm slotted-hole sieve and Two-rowed Malting barley which passes through a 2.18 mm x 19.05 mm slotted-hole sieve

(2) Barley — Six-rowed barley, Two-rowed barley, or Barley that passes through a 1.98 mm x 19.05 mm slotted-hole sieve

3.71 treated seed and other chemical substances

— Treated seed — Treated seed is grain that has been coated with an agricultural chemical for agronomic purposes. These seed dressings contain a dye to render the treated seed visually conspicuous. The colour of the dye varies depending upon the type of treatment and the type of grain. Seed treated with an inoculant may have a green stain. The coatings or stains may appear greasy or powdery and surface area distribution ranges from tiny flecks to complete coverage.

— Other chemical substances — Other chemical substances refers to any chemical residues either adhering to the kernel or remaining in the sample and to samples having a chemical odour of any kind.

3.72 unmillable material below the screen (screenings)

the total material passing through a 2.20mm screen after a sample of grain is subjected to the screening process. It includes Small Foreign Seeds.

3.73 variety

the next lowest level taxonomic rank of a plant below that of the term “species”

3.74 varieties with adhered hulls

varieties with adhered hulls are any kernels of non-hulless varieties

3.75 varietal purity

It is recognised that a load may not be 100% of a specific variety and may be contaminated by the presence of another variety of barley. Malting barley is extremely sensitive to varietal admixtures. Different malting varieties cannot be binned together:

— All Malt grades are variety specific grades with a minimum varietal purity of 95%
— There are no varietal purity limits for feed grades

Specific limits apply to the presence of six row and blue / black aleurone varieties in barley grades.

3.76 weathered

kernels discoloured by weathering to a very deep yellow or light brown. Severely weathered kernels are severely discoloured. They may be dark brown, heavily stained or distinctly bleached and may also be mildewed. Consider the number of affected kernels and their condition when you assess the general colour of the sample.

3.77 weevilled grains

grains that are partially or wholly bored by insects injurious to grains but does not include germ eaten grains and egg spotted grains
3.78 wheat, cereal rye, triticale, cultivated oats, rice
these cereal grains are often referred to as foreign grain and are assessed separately from foreign seeds

3.79 wild oats, wild radish
wild oats is an annual grassy weed. The seeds vary in colour from white to black. They are normally more slender than domestic oats, and have a slanting, circular depressed scar, sometimes called a sucker mouth, at the base, and a bent twisted awn. Wild oats and wild radish are assessed separately from foreign seeds.

4 Essential composition and quality factors

4.1 General quality requirements

4.1.1 Barley grains shall meet the following general requirements/limits as determined using the relevant standards listed in Clause 2. Barley

a) shall be the dried mature grains of Hordeum vulgare Linn;

b) be sweet, hard, clean, wholesome, uniform in size, shape, colour and in sound merchantable condition;

c) shall be free from a substance which renders it unfit for human or animal consumption or processing into or utilisation thereof as food or feed;

d) shall be free of pests, live animals, animal carcasses, animal droppings, fungus infestation, added colouring matter, moulds, weevils, obnoxious substances, discoloration and all other impurities except to the extent indicated in this standard and must meet any other phytosanitary requirements specified by the importing country authority;

e) shall be free from filth (impurities of plant and animal origin including insects, rodent hair and excreta) in amounts that represent a hazard to human health;

f) shall be free from toxic or noxious seeds that are commonly recognized as harmful to health;

g) shall be free from abnormal flavours, musty, sour or other undesireable odour, obnoxious smell and discolouration;

h) shall be free from micro-organisms and substances originating from micro-organisms, fungi or other poisonous or deleterious substances in amounts that may constitute a hazard to human health.

i) shall be free from glass, metal, coal or dung;

j) shall contain no chemical residues which exceed the prescribed maximum residue limit: Provided that:

(i) if the prescribed maximum residue limit of an importing country is lower than is permissible, the prescribed maximum residue limit of the importing country shall be complied with; and

(ii) the Food Safety Authority may grant permission for barley with a higher maximum residue limit, to be exported to countries where this higher residue limit is permissible: Provided that the export documents are accordingly endorsed with the name of the importing country;

k) shall contain not more than 10 microgram per kilogram aflatoxin of which not more than 5 microgram per kilogram may be aflatoxin B1: Provided that:
(i) if the prescribed maximum aflatoxin limit of an importing country is lower than is permissible, the prescribed maximum aflatoxin limit of the importing country shall be complied with;

(ii) the Food Safety Authority may grant permission for barley with a higher maximum aflatoxin content to be exported to countries where this higher aflatoxin limit is permissible: Provided that the export documents are accordingly endorsed with the name of the importing country; and

(iii) an inspector shall verify compliance to the levels of aflatoxin by sampling and submitting samples for analysis of only certain consignments according to a risk-based plan.

l) shall comply with the requirements for declared plant injurious organisms of phytosanitary importance as determined by the plant health protection agency.

4.1.2 Barley grains shall be in form of well-filled seeds of uniform colour.

4.1.3 If barley grains are presented in bags, the bags shall also be free of pests and contaminants. In addition the barley grains shall comply with any conditions set by the importing country authority.

4.1.4 If barley grains are rejected because pests or contaminants are found in inspected samples, the barley grains are not to be re-presented for inspection unless they have been treated or cleaned.

4.1.5 Blending of rejected barley grains is not permitted as a treatment for insect infestation or as a method of cleaning for contaminants for which there is a nil tolerance

4.1.6 Brushing the outside of bags is not permitted as a remedy to remove pests or contaminants.

4.2 General purpose barley grades

General purpose barley grains for human consumption shall be classified into four grades on the basis of the tolerable limits established in Table 1 which shall be additional to the general requirements set out in this standard.

4.2.1 Unclassified barley grains

Shall be barley which do not fall within the requirements of Grades 1, 2, 3 and 4 of this standard but are not rejected barley grains.

4.2.2 Reject grade barley

(a) Does not meet the requirements for the Grades 1, 2, 3, or 4; or

(b) Contains 8 or more stones or any number of stones which have an aggregate weight in excess of 0.2 percent of the sample weight, 2 or more pieces of glass, 3 or more crotalaria seeds (Crotalaria spp.), 2 or more castor beans (Ricinus communis L.), 4 or more particles of an unknown foreign substance(s) or a commonly recognized harmful or toxic substance(s), 8 or more cocklebur (Xanthium spp.) or similar seeds singly or in combination, 10 or more rodent pellets, bird droppings, or equivalent quantity of other animal filth per 1000 1183 ml of barley; or

(c) Has a musty, sour, or commercially objectionable foreign odour; or

(d) Is heating or otherwise of distinctly low quality.

It cannot satisfy the conditions of unclassified barley grains and shall be classified as reject barley grains and shall be condemned as unfit for human consumption.
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
<th>Method of test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varietal Purity Min (% by count)(All approved varieties)</td>
<td>Grade 1: 95.0, Grade 2: 95.0, Grade 3: 95.0, Grade 4: 95.0.</td>
<td>ISO 605</td>
</tr>
<tr>
<td>Moisture, max (%)</td>
<td>Grade 1: 12.0, Grade 2: 12.0, Grade 3: 12.5, Grade 4: 13.5.</td>
<td>ISO 711/712</td>
</tr>
<tr>
<td>Protein Min (%)(N X 6.25 @ 0% Moisture Basis)</td>
<td>Grade 1: 8.0, Grade 2: 8.0, Grade 3: 8.0, Grade 4: 8.0.</td>
<td>ISO 20483</td>
</tr>
<tr>
<td>Test weight Min (kg/hl)</td>
<td>Grade 1: 63(303), Grade 2: 60(288), Grade 3: 57(274), Grade 4: 54(268).</td>
<td>ISO 605</td>
</tr>
<tr>
<td>Sound barley, % by weight, min</td>
<td>Grade 1: 97.0, Grade 2: 94.0, Grade 3: 90.0, Grade 4: 85.0.</td>
<td>ISO 605</td>
</tr>
</tbody>
</table>

Degree of soundness

- **Sweet, well matured, practically free from weather-damaged kernels**
- **Reasonably sweet, well matured, reasonably free from weather-damaged kernels**
- **Excluded from higher grades on account of damaged kernels**

Thin barley, % by mass, max.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Others cereals grains</td>
<td>1.5</td>
<td>2.5</td>
<td>8.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Ergot</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Excreta</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Insperable seeds</td>
<td>0.20</td>
<td>0.20</td>
<td>0.45</td>
<td>1.0</td>
</tr>
<tr>
<td>Sclerotinia</td>
<td>0.05</td>
<td>0.05</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Stones</td>
<td>0.15</td>
<td>0.15</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Wild oats</td>
<td>1.0</td>
<td>1.0</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Total</td>
<td>2.5</td>
<td>2.5</td>
<td>10.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Foreign matter, % by mass, max.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fireburnt</td>
<td>0.5</td>
<td>0.5</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Fusarium</td>
<td>0.25</td>
<td>0.50</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Heated, rotted, mildewed</td>
<td>0.20</td>
<td>0.50</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Sprouted</td>
<td>0.50</td>
<td>1.0</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Broken, immature, weevilled</td>
<td>4.0</td>
<td>6.0</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2.0</td>
<td>4.0</td>
<td>6.0</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Defective grains, max (% by count, 100 grain sample, unless otherwise stated)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aflatoxin including (AFB1+AFB2+AFG1 +AFG2), ppb</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Aflatoxin B1 only, ppb</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total Fumonis including (FB1 + FB2 + FB3), ppb</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Cereals Smut / Cereal Ergot(3.8)</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Loose Smut (weight in grams)(Weight of all pieces per half litre)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Pickling compounds (entire load)(3.46)</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Chemicals not approved for barley (3.9)</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Stored Grain Insects & Pea Weevil – Live (entire load)</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Stored Grain Insects & Pea Weevil – Dead (entire load)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Field Insects – All Others (Dead or alive)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Snails (Dead or alive)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sand (Individual grains)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Earth (5mm max in diameter)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Stones (entire load)</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Objectible Material (entire load) (3.44)</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
4.3 Malt barley grades

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
<th>Method of test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>Grade 2</td>
<td>Grade 3</td>
</tr>
<tr>
<td>Varietal Purity Min (% by count) (All approved 2 row malting varieties)</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Moisture, max (%)</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Protein Min (% N X 6.25 @ 0% Moisture Basis)</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Protein Max (% by Dumas method)</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Test weight Min (kg/hl)</td>
<td>65.0</td>
<td>65.0</td>
</tr>
<tr>
<td>Retention Min (% by weight)</td>
<td>70.0</td>
<td>62.0</td>
</tr>
<tr>
<td>Screenings Max (% by weight) All Varieties except Franklin</td>
<td>7.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Screenings Max (% by weight) Franklin variety ONLY</td>
<td>10.0</td>
<td>N/A</td>
</tr>
<tr>
<td>Germinative Energy Min (%) (IOB 4ml Germinative Energy test)</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Germinative Capacity Min (%) (IOB Germinative Capacity test (stain))</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Rapid Visco Analysers Min (units) (RVA units)</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>Falling Number Min (sec) (Falling Number result)</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

Defective grains, max (% by count, 100 grain sample, unless otherwise stated):

- Shot or Sprouted: Nil
- Dark Tipped: 10.0
- Field Fungi: 5.0
- Skinnings: 15.0
- Insect Damaged (count per half litre): 10
- Split or Cleaved: 1.0
- Broken (% wt 100 gram sample): 2.0
- Frost Damaged: 5.0
- Dry Green or Sappy: 1.0
- Heat Damaged, Bin Burnt or Storage Mould Affected (entire load): Nil

Total Defective: 2.0

Foreign seed contaminants, Max – (count of seeds in total per half litre unless otherwise stated):

- Foreign grain (wheat, cereal rye, triticale, cultivated oats, rice): 85
- Variation (Wild Oats, Wild Radish): 25
- Type 1 (individual seed basis): 8
- Type 2 (entire load): Nil
- Type 3 (a): 2
- Type 3 (b): 4
- Type 3 (c): 4
- Total: 2.0

Other contaminants, Max – (count per half litre, unless otherwise stated):

- Total Alfatoxins including (AFB1+AFB2+AFG1 +AFG2), ppb: 15
- Alfatoxin B1 only, ppb: 5
- Total Fumonisin including (FB1 + FB2 + FB3), ppb: 5
- Foreign Material (% by weight, Other than already specified): 1.0
- Cereal Smut / Cereal Ergot: Nil
- Loose Smut (weight in grams): 0.1
- Ryegrass Ergot (length in cm of all pieces present aligned end on end): 0.5
- Pickling Compounds (entire load): Nil
- Stored Grain Insects & Pea Weevil – Live (entire load): Nil
- Stored Grain Insects & Pea Weevil – Dead: 10
- Field Insects – Sitona Weevil (Dead or alive): 10
- Field Insects – All Others (Dead or alive): 3
- Grains (Dead or alive): 2
- Stored (Individual grains): 50
- Earth (5mm max in diameter): 3
- Stones (entire load): Nil
- Objectionable Material (entire load): Nil

Total: 10
4.4 Feed barley grades

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
<th>Method of test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varietal Purity Min (% by count) (Any 2 row or 6 row and barley varieties)</td>
<td>Grade 1: N/A</td>
<td>Grade 2: N/A</td>
</tr>
<tr>
<td>Sound (whole) grains, % min by weight</td>
<td>97.0</td>
<td>94.0</td>
</tr>
<tr>
<td>Moisture, max (%)</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Protein content (%N X 6.25 @ 0% Moisture Basis)</td>
<td>10.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Weight of 1000 grains, in grams (as received) (min.)</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>Test Weight Min (kg/hl)</td>
<td>62.5</td>
<td>60.0</td>
</tr>
<tr>
<td>Retention min (% by weight)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Screenings, Max (% by weight)</td>
<td>15.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Foreign material, % max by weight</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Thin grains, % max by weight</td>
<td>4.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Rapid Visco Analyser Min (units) (RVA units)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Falling Number Min (sec) (Falling Number result)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Defective grains, max (% by count, 100 grain sample, unless otherwise stated)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shot or Sprouted</td>
<td>Free from root system</td>
<td>5.0</td>
</tr>
<tr>
<td>Ergot infested, % max</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Fied Fungi</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Skinnings</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Insect Damaged (count per half litre)</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>Split or Cleaved</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Broken (% wt 100 gram sample)</td>
<td>4.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Frost damaged</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Dry Green or Sappy</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Heat Damaged, Bin Burnt or Storage Mould Affected (entire load)</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Total Defective</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Foreign seed contaminants, Max – (count of seeds in total per half litre unless otherwise stated)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign grain (3.24) (% max by weight)</td>
<td>500 (2.0)</td>
<td>1500 (5.0)</td>
</tr>
<tr>
<td>Variation (Wild Oats, Wild Radish)</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Variation (Barley with coloured Aleurone Layer (blue/black))</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Type 1 (Individual seed basis (3.26))</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Type 2 (entire load) (3.26)</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Type 3 (a) (3.26)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Type 3 (b) (3.26)</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Type 3 (c) (3.26)</td>
<td>4 seeds/1 pod</td>
<td>4 seeds/1 pod</td>
</tr>
<tr>
<td>Type 3d (3.26)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Type 4 (3.26)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Type 5 (3.26)</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Type 6 (3.26)</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Type 7 (a) (3.26)</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Type 7 (b) (3.26)</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>Small Foreign Seeds (% by weight) (3.59)</td>
<td>1.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Total in % by weight</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Other contaminants, Max – (count per half litre, unless otherwise stated)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aflatoxin – Total ppb (Total Aflatoxin including (AFB1+AFB2+AFG1 +AFG2))</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Aflatoxin B1 only, ppb</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Fumonisin – Total ppb (Total Fumonisin including (FB1 + FB2 + FB3))</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Cereal Smut / Cereal Ergot (3.8)</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Loose Smut (weight in grams) (Weight of all pieces per half litre)</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ryegrass E (Length in cm of all pieces present aligned end on end)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Pickling Compounds (entire load) (Pickled grain)</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Chemicals not approved for barley (entire load) (3.9)</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Stored Grain Insects & Pea Weevil – Live (entire load)</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Stored Grain Insects & Pea Weevil – Dead</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Field Insects – Sitona Weevil (Dead or alive)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Field Insects – All Others (Dead or alive)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Snails (Dead or alive)</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sand (Individual grains)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Earth (5mm max in diameter)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Stones (entire load), % max by weight</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Objectionable Material (entire load) (3.44)</td>
<td>Nil</td>
<td>Nil</td>
</tr>
</tbody>
</table>
5 Contaminants

5.1 Pesticide residues

Barley grains shall comply with those maximum pesticide residue limits established by the Codex Alimentarius Commission for this commodity. The limits listed below were current as of the dates indicated. Annex E provides current MRLs for the USA, EU and Codex markets.

Maximum pesticide residue limits and extraneous maximum residue limits in barley (current as at 2009-06-09)

<table>
<thead>
<tr>
<th>Type</th>
<th>Unit symbol</th>
<th>Limit</th>
<th>Method of test</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALDICARB</td>
<td>mg/kg</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMINOPYRILID</td>
<td>mg/kg</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BENTAZONE</td>
<td>undef</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIFENTHRIN</td>
<td>mg/kg(*)</td>
<td>0.05</td>
<td></td>
<td>Residues not expected to exceed 0.01 mg/kg.</td>
</tr>
<tr>
<td>BITERTANOL</td>
<td>mg/kg(*)</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARBENDAZIM</td>
<td>mg/kg</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHLORIMIQUT</td>
<td>mg/kg</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHLOROTHALONIL</td>
<td>mg/kg</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYPERMETHRIN</td>
<td>mg/kg(*)</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYPRODINIL</td>
<td>undef</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIMETHOATE</td>
<td>mg/kg</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIOQUAT</td>
<td>mg/kg</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISULFOTON</td>
<td>mg/kg</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DITHiocarbamates</td>
<td>undef</td>
<td>1</td>
<td>Source of data: mancozeb</td>
<td></td>
</tr>
<tr>
<td>ETHION</td>
<td>mg/kg</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAMOXADONE</td>
<td>undef</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FENUBUCONAZOLE</td>
<td>mg/kg</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FENPROPIPMORPH</td>
<td>undef</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIPRONIL</td>
<td>mg/kg</td>
<td>0.002(*)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPRODINE</td>
<td>mg/kg</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRESOXIM-METHYL</td>
<td>mg/kg</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINDENE</td>
<td>mg/kg</td>
<td>0.01(*)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>METHECARB</td>
<td>mg/kg</td>
<td>0.05(*)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>METHYLCARB</td>
<td>mg/kg</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>METHOMYL</td>
<td>mg/kg</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXYDEMETON-METHYL</td>
<td>undef</td>
<td>0.02(*)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIPRCONAZOLE</td>
<td>undef</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYRACLOSTROBIN</td>
<td>undef</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUINOXYPHEN</td>
<td>mg/kg</td>
<td>0.01(*)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUINOTENE</td>
<td>mg/kg</td>
<td>0.01(*)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEBUCONAZOLE</td>
<td>mg/kg</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRIFLOXYSTROBIN</td>
<td>undef</td>
<td>0.5</td>
<td>Interim MRL (2005-2009)</td>
<td></td>
</tr>
</tbody>
</table>

5.2 Heavy metals

Barley grains shall be free from heavy metals in amounts which may represent a hazard to health. If present, they shall not exceed the limits established in Table 2.

Table 2 — Heavy metal contaminant limits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit</th>
<th>Test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Arsenic (As), ppm max.</td>
<td>0.10</td>
<td>EAS 101 or EAS 100</td>
</tr>
<tr>
<td>ii) Copper (Cu), ppm max.</td>
<td>2.0</td>
<td>EAS 100</td>
</tr>
<tr>
<td>iii) Lead (Pb), ppm max.</td>
<td>0.10</td>
<td>EAS 100</td>
</tr>
<tr>
<td>iv) Cadmium (Cd), ppm max.</td>
<td>0.02</td>
<td>EAS 100</td>
</tr>
<tr>
<td>v) Mercury (Hg), ppm max.</td>
<td>0.01</td>
<td>EAS 100</td>
</tr>
</tbody>
</table>

5.3 Mycotoxin and chemical limits

Barley grains shall comply with those maximum mycotoxin limits established by the Codex Alimentarius Commission for this commodity.

5.3.1 Uric acid shall not exceed 100 milligrams per kilogram.

5.3.2 Total aflatoxin levels in barley grains for human consumption shall not exceed 10 ppb with B₁ not exceeding 5 ppb when tested according to ISO 16050.
5.4 Environment

Barley shall be produced, processed and handled under conditions complying with the stipulations of relevant environmental regulations and therefore conform to cleaner production technological practices.

6 Hygiene

6.1 It is recommended that the produce covered by the provisions of this Standard be prepared and handled in accordance with the appropriate sections of CAC/RCP 1, ISO 22000, and other relevant Codex texts such as Codes of Hygienic Practice and Codes of Practice.

6.2 The produce should comply with any microbiological criteria established in accordance with CAC/GL 21.

6.3 To the extent possible in good manufacturing practice, the products shall be free from objectionable mater.

6.4 When tested by appropriate standards of sampling and examination listed in Clause 2, the products:

— shall be free from microorganisms in amounts which may represent a hazard to health and shall not exceed the limits stipulated in Table 3;

— shall be free from parasites which may represent a hazard to health; and

— shall not contain any substance originating from microorganisms in amounts which may represent a hazard to health.

7 Packaging

7.1 Barley grains shall be packed in suitable packages which shall be clean, sound, free from insect, fungal infestation and the packing material shall be of food grade quality.

7.2 Barley grains shall be packed in containers which will safeguard the hygienic, nutritional, technological and organoleptic qualities of the products.

7.3 The containers, including packaging material, shall be made of substances which are safe and suitable for their intended use. They shall not impart any toxic substance or undesirable odour or flavour to the product.

7.4 The net weight of the barley grains in a package shall comply with OIML R87.

7.5 Each package shall contain barley grains of the same type and of the same grade designation.

7.6 Each package shall be securely closed and sealed.

8 Marking or labelling

8.1 In addition to the requirements in EAS 38, each package shall be legibly and indelibly marked with the following:

Table 3 — Microbiological limits for barley grains

<table>
<thead>
<tr>
<th>Type of micro-organism</th>
<th>Limits</th>
<th>Test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Yeasts and moulds, max. per g</td>
<td>10^2</td>
<td>EAS 217</td>
</tr>
<tr>
<td>ii) S. aureus per 25 g</td>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>iii) E. Coli, max. per g</td>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>iv) Salmonella, max. per 25 g</td>
<td>Nil</td>
<td></td>
</tr>
</tbody>
</table>
i) product name as “Barley Grains”;

ii) variety;

iii) grade;

iv) name, address and physical location of the manufacturer/packer/importer;

v) lot/batch/code number;

vi) net weight, in g/kg;

vii) the declaration “Food for Human Consumption”;

viii) storage instruction as “Store in a cool dry place away from any contaminants”;

ix) crop year;

x) packing date;

xi) expiry date or best before ___________ month ______ year;

xii) a declaration of the product lifespan;

xiii) instructions on disposal of used package;

xiv) country of origin;

xv) a declaration on whether the barley was genetically modified or not.

8.2 A declaration of any inaccurate information in marking/labelling is prohibited and shall be punishable by law under the statutes of the Partner States.

8.3 The authorized packer shall observe all instructions regarding testing, grading, packing, marking, sealing and maintenance of records applicable to the product.

9 Sampling and methods of analysis

9.1 General

The following section details methods and procedures to be used for the assessment of various quality parameters as outlined in this standard.

Field/Routine Assessment Methods are included as a guide to industry where Reference Methods may not be able to be implemented. Note that Field Assessment Methods must equate to the Reference Method for the applicable test method.

In all instances of disputes, the Reference Method takes precedence over the Field Assessment Method.

Depending on the test to be conducted, variations may exist due to equipment used.

Procedures outlined are a guide for industry. Industry is free to develop their own Operational Procedures for each test and activity based on their own circumstances. At all times industry use of apparatus outlined in this Standard must comply with the manufacturers’ recommendations for occupational health and safety and training.

9.2 Sampling

9.2.1 Definitions

This is the standard procedure used to draw a sample of the commodity from a bulk unit tendered for delivery to enable tests to be conducted on the commodity for the purposes of determining its quality.
9.2.2 Scope

Barley is traded on the basis of quality tests conducted on lots of barley presented for sale or delivery to end users. Obtaining representative samples is critical to ensuring test results reflect the true quality of these lots.

This procedure is applicable to all cereal grains, pulses and oilseeds.

9.2.3 Apparatus

- Manual sampling probe (double tube compartment probe, one inside the other, equipped with spiralled ports that open sequentially from bottom to top).
- Vacuum or pneumatic probe (an alternative to the manual sampling probe and consisting of a hand held or remotely controlled probe which retrieves grain through the use of a vacuum or other air movement system).
- Mixing bucket (including other associated equipment such as mini-auger suitable for mixing sample, optional).
- Sample dividing apparatus (optional).

9.2.4 Reagents

Not Applicable.

9.2.5 Procedure

Sample collection guidelines for collecting a representative sample

- The surface of the grain should be fully exposed prior to sampling to allow for effective visual inspection. At this point, the load should be scanned for any defects or contaminants.

- The probe to be used should be of a sufficient length in order to obtain a sample from as close as possible to the bottom of truck.

- A primary sample must be drawn for assessment by thrusting the sampling probe as vertically and as deep as possible into the load.

- At least one probe must be taken from the front, middle and rear of each bulk unit.

- If more than one unit is delivered, samples must be drawn from each bulk unit as described above.

- If the bulk units are of visibly different quality, or if required at the Receival Agents discretion, different samples and grade classification may be undertaken for each separate bulk unit.

- If the declared varietal composition or paddock where the grain was grown is different for each unit tendered for delivery, or more than one variety is commingled in each delivery unit, then a separate assessment of each unit must be conducted.
Each primary (probed) sample must consist of at least one litre of grain.

A composite sample from each load tendered for delivery shall consist of the following minimum quantities and number of probes:

<table>
<thead>
<tr>
<th>Load Size</th>
<th>Sample Size (minimum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 tonnes or less</td>
<td>3 litres</td>
</tr>
<tr>
<td>Over 10 tonnes up to 20</td>
<td>4 litres</td>
</tr>
<tr>
<td>Over 20 tonnes up to 30</td>
<td>5 litres</td>
</tr>
<tr>
<td>Over 30 tonnes up to 40</td>
<td>6 litres</td>
</tr>
<tr>
<td>Over 40 tonnes up to 50</td>
<td>7 litres</td>
</tr>
<tr>
<td>Over 50 tonnes up to 60</td>
<td>8 litres</td>
</tr>
<tr>
<td>Over 60 tonnes up to 70</td>
<td>9 litres</td>
</tr>
<tr>
<td>Over 70 tonnes up to 80</td>
<td>10 litres</td>
</tr>
</tbody>
</table>

Note – in the above table the sample size reflects the number of probe samples. For example, 4 litres equates to 4 probe samples.

Sample mixing

The primary samples in each probe must be collected together and thoroughly mixed in a suitable container using a mechanical device where appropriate, to form the composite sample.

Sub samples should be drawn from the composite sample either by hand or through the use of a suitable sample dividing apparatus.

Sample Analysis

The sub sample should then be analyzed for all of the quality parameters specified in this Standard or in the Receival Agent’s agreement with the buyer concerned if different from this Standard.

Results should be entered on the Receival Agents sample receipt.

9.2.6 References

Sampling shall be carried out in accordance with ISO 13690.

9.3 Moisture assessment of cereals — Fan forced oven reference method

9.3.1 Definitions

This is the fan forced reference method specified in National Measurement Institute legislation to be used to determine the moisture content of grain samples as loss in weight when subjected to heating.

9.3.2 Scope

This is applicable to all cereals when being tested for moisture content under laboratory conditions.

9.3.3 Apparatus

- Laboratory Mill
- Forced Draft Oven capable of being maintained at 130 °C ± 1 °C
- Aluminium moisture dishes, 50 – 55 by 15 – 20mm with tight fitting covers
- Desiccator
- Electronic balance capable of weighing up to 100g to 4 decimal places
9.3.4 Reagents

Not applicable

9.3.5 Procedure

- Grind a 30-40g whole grain sample in a suitable mill (Perten 3303, Tecator, Cemotec or similar). Sample to be “as is”.
- Mix thoroughly and transfer 2 to 3g portions to each of 2 or more tared moisture dishes.
- Cover and weight the dishes immediately.
- Subtract tare weights and record weight of sample.
- Clean mill between samples.
- Uncover the dishes and place them in pre heated oven (130 °C) and place covers under the dishes. Evenly distribute the dishes within the oven.
- Close oven door and allow temperature to stabilize and then heat for exactly 60 minutes.
- Remove the dishes, quickly replace the lids and place in the desiccator.
- Weigh the dishes after they reach room temperature.
- Determine loss in weight as moisture as per the following equation:

\[
\% \text{ Moisture} = \frac{W_{\text{dry}} - W_{\text{dish}}}{W_{\text{tp}}} \times 100
\]

Where
- \(W_{\text{tp}} \) is the weight of the test portion before oven drying.
- \(W_{\text{dry}} \) is the weight of the dish, lid and test portion after oven drying.
- \(W_{\text{dish}} \) is the weight of the empty oven moisture dish and lid.

Report result to the nearest 0.1%.

If duplicates differ by more than 0.2%, repeat the determination, otherwise, report the average of the duplicates.

9.3.6 References

ISO 711, Cereals and cereal products — Determination of moisture content (Basic reference method)

9.4 Moisture assessment of cereals — Brabender oven reference method

9.4.1 Definitions

This is the Brabender Oven reference method used to determine the moisture content of grain samples as loss in weight when subjected to heating.

9.4.2 Scope

This is applicable to all cereals when being tested for moisture content.
9.4.3 Apparatus

- Mill - A low moisture loss mill must be used as significant levels of heat can be generated. The mill of choice is the Falling Number 3303 mill (a Wiley - using a 20 mesh screen). The Falling Number Mill 3303 is used with the setting – Barley – 0.

- Electronic balance – accuracy = 0.001g (or better)

- Aluminium dishes - these dishes must be kept clean and weigh 11.500 ± 0.005g

- Vial with well sealing screw to lid. Currently a small yellow top polyethylene container with polypropylene lid is used. Samples must be prepared and used within 24hrs.

9.4.4 Reagents

Not Applicable

9.4.5 Procedure

- Grind approx 50g of sample in accordance with relevant mill manual. Mix sample well and replace into original sample vial tightly sealing the lid. Sample must be prepared and used on the same day or prepared on the evening before.

- Make sure the dishes are clean and are resting on a clean surface (wipe with tissue). Tare the first dish and also subsequent dishes used but note the weight before taring if weight varies from 11.500 or tare varies by ±0.010g from tare. Recheck weight of dish to ensure within 11.500 ± 0.005g. Dishes must also be checked before and after the season to ensure they are correct.

- Weigh out accurately 10.000 ± 0.001g of the ground sample into an Aluminium dish. Then shake dish to obtain an even layer of sample.

- Take the weighed samples and place into the oven which has been previously switched on and heated to 130 °C. Place the dishes in the oven noting the number of the dish and its position number (1 through 9). There are ten positions in the oven (the tenth place is taken up by an empty dish for calibration purposes).

- When the oven has been loaded note the time or set a countdown timer to 60 mins once the required temperature is reached. Usually for 130°C the oven takes 10 – 15 minutes to reach the required temperature.

- When one hour has elapsed, standardise the instrument by selecting the empty dish and placing 9g in weights in the small platform between the 3 prongs on the balance and adjust the scale to 10.0 with the standard swinging freely. Moisture can then be read off for each sample in turn.

- Read the samples in the dishes consecutively recording results in the relevant worksheet.

NOTE:

- When switching the oven on make sure that the Brabender oven is level (use bubble level).

- All results are a direct reading of % w/w water.

- The minimum heating time must be adhered to (1 hour) but heating over the hour will not affect the results (up to 2 hours).

- If only a few grams of sample are available see the manufacturers hand book for the technique to be adopted.

- The weight of Aluminium dishes is to be checked at 6 monthly intervals to ensure they are within 11.500 +/-0.005g. If they are overweight they are to be discarded and replacements purchased. Do not add weight to the dish i.e. solder etc as this will breakdown over time or fall off. If they are overweight they may be cleaned with warm water and neutral detergent. Under no circumstances use abrasive or corrosive chemicals as this will lead to the dish being underweight.
9.4.6 References

ISO 711, Cereals and cereal products — Determination of moisture content (Basic reference method)

9.5 Moisture assessment of cereals — NIR

9.5.1 Definitions
This describes the NIR method for determination of moisture in cereal grains.

9.5.2 Scope
This procedure is applicable to all cereal grains.

9.5.3 Reagents
Not applicable.

9.5.4 Apparatus
NIR instrument approved for use for trade purposes under the conditions currently being developed by the National Measurement Institute.

9.5.5 Method
Sample to be “as is”.

Individual manufacturer instructions and procedures should be followed for operation and maintenance of NIR instruments used to determine grain moisture.

Report result to the nearest 0.1%.

9.5.6 References

ISO 712, Cereals and cereal products — Determination of moisture content — Routine reference method

9.6 Protein assessment of cereals — Dumas reference method

9.6.1 Definitions
This is the Dumas reference method used to determine the crude protein content of cereal grains. Samples are incinerated in an oxygen rich atmosphere to produce oxides of nitrogen which are catalytically reduced to molecular nitrogen. Interfering combustion products are removed by selective absorption. Nitrogen concentration is then measured by a thermal conductivity detector calibrated against a standard of known nitrogen content. Protein is then calculated from nitrogen content using a known factor for each product.

9.6.2 Scope
This method is applicable to all cereal grains.

9.6.3 Apparatus

— Combustion nitrogen analyser consisting of a furnace capable of maintaining minimum operating temperature of 950 °C for pyrolysis of the sample in pure oxygen, an isolating system capable of isolating liberated nitrogen gas from other combustion products for subsequent measurement by thermal conductivity detector, a device for converting NOx products to nitrogen or measuring NO2, and a detector system capable of interpreting detector response as percent N.
9.6.4 Reagents

⎯ Gases – carrier gas (usually helium), pure (99.9%) oxygen, compressed air (used to drive component parts of the analyser)

⎯ Reference calibration standard – TRIS - high purity (hydroxymethyl) aminomethane or Nicotinic acid

9.6.5 Procedure

⎯ Follow procedures to set up the analyser and operating gas systems as specified by the manufacturer. Perform the necessary adjustments for gas flows and pressures, combustion temperatures and times and start up equilibrium times to ensure optimal analysis conditions for the type of sample to be analysed.

⎯ Calibrate the instrument by following the manufacturer’s guidelines using the appropriate calibration standard. The calibration should be cross checked against a second high purity standard – Nicotinic Acid or EDTA. Blanks, as stipulated by the manufacturer, should be run prior to analysis to establish the baseline. These should include consideration of an atmospheric blanks factor or a sample blank similar to samples under test.

⎯ Grind an amount of sample sufficient to represent the original material, and to perform a number of nitrogen determinations as required. Sample to be “as is”.

⎯ Weigh accurately to 0.001g an amount of ground sample, as recommended by the manufacturer, into the appropriate sample capsule and place the sample into the instrument for analysis.

⎯ If presenting the sample to the instrument in a pellet form, adjustments may be required to burn temperatures, times and blanks to compensate for the absence of a sample capsule.

⎯ Blank and standard control/check samples should be repeated periodically (as a guide every 10 samples) during each analytical run to monitor any drift. Standard drift corrections and recalculation of samples should be made after analysis if the drift exceeds specification.

⎯ Calculation of nitrogen content is usually performed automatically by the instrument data processing system or associated software.

⎯ Results should be expressed as percent (5) nitrogen to two decimal places. For conversion to protein content “as is” multiply barley nitrogen by 5.7% and all other cereals by 6.25 unless otherwise stated. Convert protein content to an 0% moisture basis for barley for the nitrogen/protein values where necessary. Report result to the nearest 0.1%.

⎯ Analysis should be repeated if the difference between duplicate test results exceed the respective repeatability values (r) shown in the following table:

<table>
<thead>
<tr>
<th>Grain</th>
<th>Mean % N</th>
<th>Repeatability</th>
<th>Reproducibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>r</td>
<td>RSDr %</td>
</tr>
<tr>
<td>Barley</td>
<td>1.85</td>
<td>0.06</td>
<td>1.22</td>
</tr>
<tr>
<td>Barley malt</td>
<td>1.49</td>
<td>0.04</td>
<td>0.99</td>
</tr>
<tr>
<td>Sorghum</td>
<td>1.47</td>
<td>0.05</td>
<td>1.15</td>
</tr>
<tr>
<td>Wheat durum</td>
<td>2.09</td>
<td>0.04</td>
<td>0.64</td>
</tr>
<tr>
<td>Wheat*</td>
<td>1.97</td>
<td>0.03</td>
<td>0.61</td>
</tr>
<tr>
<td>Wheat APH</td>
<td>2.54</td>
<td>0.03</td>
<td>0.46</td>
</tr>
<tr>
<td>Wheat flour</td>
<td>2.03</td>
<td>0.03</td>
<td>0.46</td>
</tr>
</tbody>
</table>

* Wheat other than the type specified in the above table
— Suitable fineness of grind gives a relative standard deviation (RSD) of ≤ 2.0% for ten successive determinations of nitrogen in ground test material. A larger RSD indicates the need for a finer grind or a larger analytical test weight, assuming that the instrument has been properly set up.

— For each batch the accuracy of the system is demonstrated by making ten successive determinations of nitrogen in nicotinic acid or tryptophan (different materials from calibration standard). Means of determinations must be ≤ ± 0.15 of respective theoretical values with standard deviation ≤ 0.15. Failure to achieve these values indicates the need for recalibration or optimisation of instrument settings.

— Accuracy checks should be carried out (1) On instrument installation and reinstallation following repairs and service; (2) When a new batch of working reference material is used; (3) After experiencing problems in instrument set up.

9.6.6 References

ISO/TS 16634-2, Food products — Determination of the total nitrogen content by combustion according to the Dumas principle and calculation of the crude protein content — Part 2: Cereals, pulses and milled cereal products

9.7 Protein assessment of cereals — NIR

9.7.1 Definition

This describes the NIR method for determination of protein in cereal grains.

9.7.2 Scope

This procedure is applicable to all cereal grains.

9.7.3 Reagents

Not applicable.

9.7.4 Apparatus

NIR instrument approved for use for trade purposes.

9.7.5 Method

Sample to be “as is”.

Individual manufacturer instructions and procedures should be followed for operation and maintenance of NIR instruments used to determine grain protein.

Report result to the nearest 0.1%.

9.7.6 References

ISO 20483, Cereals and pulses — Determination of the nitrogen content and calculation of the crude protein content — Kjeldahl method

9.8 Test weight assessment — Schopper Chondrometer reference method

9.8.1 Definitions

The Schopper Chondrometer is used for the measurement of Grain Density (Density is also known as “Bushel Weight”, “Test Weight” or “Hectolitre Weight”).
9.8.2 Scope
This method is applicable to all cereal grains.

9.8.3 Apparatus
- 1L Schopper Calibrated Chondrometer
- 2 decimal place balance
- Plastic bowl

9.8.4 Reagents
Not applicable

9.8.5 Procedure

- Secure bottom half of cylinder A to base plate on the chondrometer box.
- Ensure the sliding divider C is in the slot on cylinder A.
- Place weight D on top of sliding divider.
- Secure top half of cylinder B to the bottom half A.
- Ensure the slider is closed and pour grain in the cylinder at a constant rate until full to the top.
- Pull the sliding divider out and the weight will move down, drawing the grain down with it (you will hear it moving down).
- Once the weight D is at the bottom, replace the sliding divider back in the slot.
- Carefully tip the cylinder upside down and tip out all the grain remaining above the divider. Make sure to catch the weight D as it drops down.
- Place a plastic container on the electric balance and tare to read zero.
- Remove the blade from the chondrometer and tip the measured litre of grain into the plastic container and weigh.
9.8.6 References

ISO 7971-1, Cereals — Determination of bulk density, called "mass per hectolitre" — Part 1: Reference method

9.9 Test weight assessment — Franklin Mark 11 Chondrometer reference method

9.9.1 Definitions

This is the Franklin Mark 11 Chondrometer reference method to determine the density of cereal grains (otherwise known as the Test Weight) expressed as kilograms per hectolitre.

9.9.2 Scope

This method is applicable to all cereal grains.

9.9.3 Apparatus

— Franklin Mark II Drop Weight Trade Certified chondrometer

— Pre filling Cup

9.9.4 Reagents

Not applicable.

9.9.5 Procedure

— Assemble the instrument together and place the calibration weight onto the top of the measuring cylinder.

— Place the measuring cylinder with weight on the hook at the end of the measuring beam.

— Calibrate the instrument by moving the sliding weight to the position corresponding to 40kg/hl on the measuring beam. The beam should balance equidistantly between the top and bottom of the square space at the other end of the beam.

— If the beam is not balanced, turn the calibration screw at the other end of the beam until the correct setting is achieved.

— Remove the calibration weight. The instrument is then calibrated.

— Insert the cutter bar into the bottom measuring cylinder, and place the drop weight on top of the cutter bar.

— Fit the top filling cylinder onto the measuring cylinder.

— Fill the pre filling cup with grain. Sample to be “as is”.

— Steadily pour the grain from the pre filling cup with one hand into the top filling cylinder until it is full whilst holding both cylinders together.
Withdraw the cutter bar in a single swift motion.

Re-insert the cutter in the slit and push it through the grain with a single firm stroke.

Remove the top filling cylinder from the measuring cylinder and discard the grain remaining above the cutter, while holding the cutter in place.

Remove the cutter and suspend the measuring container from the measuring beam of the chondrometer.

Adjust the sliding weight on the beam until the instrument is balanced.

Read the test weight of the graduated balance beam at the point indicated by the sliding weight and record the result in kilograms per hectolitre.

Report the result to one (1) decimal place.

9.9.6 References

ISO 7971-2, Cereals — Determination of bulk density, called “mass per hectolitre” — Part 2: Routine method

9.10 Test weight assessment — Kern 222 Chondrometer reference method

9.10.1 Definition

This is the Kern 222 Trade Certified Chondrometer reference method to determine the density of cereal grains (otherwise known as the test weight) expressed as kilograms per hectolitre.

9.10.2 Scope

This method is applicable to all cereal grains.

9.10.3 Apparatus

— Kern 222 Trade Certified Chondrometer with valid Regulation 13 certificate.

— Electronic balance 0.01g resolution.

9.10.4 Reagents

Not applicable

9.10.5 Procedure

— Assemble the measuring container with the grain cutter inserted in the slit. Place the brass piston on top of the cutter blade. Connect the filling hopper securely on the top of the measuring container.

— Fill the pre-filling cup with grain. Grain sample to be “as is”.

— Empty the pre-filling cup out onto a large sample tray and manually remove any foreign material e.g. whiteheads, straw, barley, lupins, sticks stones etc.

— Pour the remaining grain from the sample tray back into the pre-filling cup. Ensure that the pre-filler cup is filled up to or above the internal filling line/groove.

Steadily pour the grain from the pre-filling cup into the filling hopper until the filling hopper is full.
CD/K/457:2010

— Grasp the measuring container firmly with one hand and with the other hand withdraw the cutter in a single swift motion.

— Re-insert the grain cutter in the slit and push it through the grain with a single firm stroke.

— Remove the filling hopper from the measuring container and discard the grain remaining above the cutter, while holding the cutter in place.

— Remove the cutter and return the base bucket to an upright position and then withdraw the cutter.

— Place the Steel Bowl onto the balance and press the T (Tare) button, ensure Zeros are displayed.

— Pour the grain from the bucket into the steel bowl.

— The weight in grams will appear on the display of the balance. This figure is referred to as the weight in grams per litre.

— All numerical results are to be written down to two decimal places.

9.10.6 References

ISO 7971-2, Cereals — Determination of bulk density, called "mass per hectolitre" — Part 2: Routine method

9.11 Unmillable material assessment (screenings) — Reference method

9.11.1 Definition

This is the reference method used to determine the percentage by weight of Unmillable Material Below the Screen (Screenings), including Small Foreign Seeds.

9.11.2 Scope

This method is applicable to barley.

9.11.3 Apparatus

Agitator Shaking Device

Combination of two screens – top 2.50mm top screen and 2.20mm bottom screen with the following specifications:

— 300mm diameter discs x 0.8mm stainless steel, perforated with 25.40mm x 2.20mm slots, hit and miss on ends with 4.77mm end bar and 2.0mm side bar.

— 300mm diameter discs x 0.8mm stainless steel, perforated with 25.40mm x 2.50mm slots, hit and miss on ends with 4.77mm end bar and 2.0mm side bar.

— 2.20mm slot width as assessed by an Engineers Pin Gauge is to be 2.20 mm ± 0.01 mm. Pin Gauge, being 2.21mm and 2.19, needs to have a valid calibration certificate.

— 2.50mm slot width as assessed by an Engineers Pin Gauge is to be 2.50 mm ± 0.01 mm. Pin Gauge, being 2.51mm and 2.49, needs to have a valid calibration certificate.

— Compliance testing shall be undertaken by randomly selecting 74 slots and measuring using the above Gauge. 0 to 25 slots is an acceptable failure rate. Refer to separate procedure.

Analytical balance accurate to at least 0.01g
9.11.4 Reagents

Not applicable.

9.11.5 Procedure

— Obtain a certified half litre sample of grain. Sample to be “as is”.

— Place the barley screens on top of the Agitator platform with the slots aligned toward the front of the Agitator. Ensure the barley screen is clean, smooth, dry and free of grain residues in the slots.

— Ensure the Agitator is set to perform 40 to and fro movements over a period of approximately 68 seconds.

— Pour the half litre of grain in one movement onto the screen surface. No additional movement or spreading of the sample over the screen is to occur.

— Turn on the Agitator and allow it to run until the 40 movements have been completed.

— Gently remove the screens and pan from the Agitator and detach the screens from the pan.

— Calculate Screenings percentage — Weigh the contents of the pan on an appropriate top pan balance and calculate the percentage as follows:

\[
\text{Screenings by wt (%) } = \frac{\text{Screenings Weight}}{\text{Total weight}} \times 100
\]

— Calculate small foreign seeds percentage - Separate any Small Foreign Seeds (SFS) as listed in the Definitions Section of these Standards from the Screenings fraction and weigh these separately.

\[
\text{SFS by wt (%) } = \frac{\text{SFS Weight}}{\text{Total Weight}} \times 100
\]

— Report all results to the nearest 0.1%.

9.11.6 References

ISO 5223, Test sieves for cereals

9.12 Retention — Reference method

9.12.1 Definition

This is the reference method used to determine grain retained above the 2.50mm screen, referred to as Retention.

9.12.2 Scope

This method is applicable to barley.

9.12.3 Apparatus

Agitator Shaking Device

Combination of two screens – top 2.50mm top screen and 2.20mm bottom screen with the following specifications:

- 300mm diameter discs x 0.8mm stainless steel, perforated with 25.40mm x 2.50mm slots, hit and miss on ends with 4.77mm end bar and 2.0mm side bar.
300mm diameter discs x 0.8mm stainless steel, perforated with 25.40mm x 2.20mm slots, hit and miss on ends with 4.77mm end bar and 2.0mm side bar.

2.50mm slot width as assessed by an Engineers Pin Gauge is to be 2.50 mm ± 0.01 mm. Pin Gauge, being 2.51mm and 2.49, needs to have a valid Regulation 13 certificate.

2.20mm slot width as assessed by an Engineers Pin Gauge is to be 2.20 mm ± 0.01 mm. Pin Gauge, being 2.21mm and 2.19, needs to have a valid Regulation 13 certificate.

Compliance testing shall be undertaken by randomly selecting 74 slots and measuring using the above Gauge. 0 to 25 slots is an acceptable failure rate. Refer to separate procedure.

Analytical balance accurate to at least 0.01g

9.12.4 Reagents
Not applicable.

9.12.5 Procedure

Obtain a certified half litre sample of grain. Sample to be "as is".

Place the barley screens on top of the Agtator platform with the slots aligned toward the front of the Agtator. Ensure the barley screen is clean, smooth, dry and free of grain residues in the slots.

Ensure the Agtator is set to perform 40 to and fro movements over a period of approximately 68 seconds.

Pour the half litre of grain in one movement onto the screen surface. No additional movement or spreading of the sample over the screen is to occur.

Turn on the Agtator and allow it to run until the 40 movements have been completed.

Gently remove the screens and pan from the Agtator and detach the screens from the pan.

Calculate Retention percentage — Weigh the grain remaining above the 2.50mm screen on an appropriate top pan balance and calculate the percentage as follows:

\[
\text{Retention by wt} \% = \frac{\text{Grain above the 2.50mm screen}}{\text{Total Weight}} \times 100
\]

Report all results to the nearest 0.1%.

9.12.6 References

ISO 5223, Test sieves for cereals

9.13 Falling number — Reference method

9.13.1 Definitions

This is the reference method for determination of Falling Number and is based on the unique ability of alpha amylase to liquefy a starch gel. Strength of the enzyme is measured by Falling Number defined as the time in seconds required to stir plus the time it takes to allow the stirrer to fall a measured distance through a hot aqueous gel undergoing liquefaction.

9.13.2 Scope

This method is applicable to barley.
9.13.3 Apparatus

Perten Falling Number apparatus, including standardised precision viscometer tubes with close tolerances, inside diameter ± 0.02mm outside diameter ± 0.3mm length ± 0.3mm.

Thermometer, calibrated in 0.1 °C, and certified to ± 0.3 °C.

Sample Mill. Must produce meal with particle size distribution as follows; <500μm, 0-10%; >210 but <500μm, 25-40%; <210μm, 75-50%. The recommended instrument is the Perten 3100 Mill with 0.8mm sieve.

Automatic Pipette should be capable of delivering 25 ± 0.3ml.

Analytical balance accurate to at least 0.01g

9.13.4 Reagents

Distilled water

9.13.5 Method

— Start the Falling Number instrument by following the manufacturer’s instructions. Ensure the bath is filled with distilled water and the instrument has reached full operating temperature before being used.

— Grind a minimum 250g sample of whole grain using the designated mill. Sample to be “as is”.

— Weigh 7.00 ± 0.05 g of meal into a dry falling number tube.

— Add 25 ml of distilled water from the automatic dispenser. Insert a rubber stopper into the top of the tube and shake tube in an upright position 20-30 times (up and down) or more if necessary) until mixed. Make sure all flour is suspended by upending. Alternatively the unit may shake the tubes.

— Use the viscometer stirrer to scrape down the slurry coating the upper part of the tube, and scrape all slurry from the stopper.

— Place the tube and the viscometer stirrer into the water bath within 30 to 60 seconds after mixing. Start the Falling Number apparatus immediately afterward.

— At the conclusion of the test, record the time in seconds.

— Remove the tube and appropriately clean the stirrer, tube and stopper using cold water and brush. Distilled water may assist removal of all traces of the starch gel material. Clean the mill of all residues retained from the sample.

— Report the Falling Number value to the nearest second.

9.13.6 References

ISO 3093, Wheat, rye and respective flours, durum wheat and durum wheat semolina — Determination of the Falling Number according to Hagberg-Perten

9.14 Rapid visco analyser —Reference method

9.14.1 Definitions
This is the reference method for determination of RVA units and is based on the unique ability of alpha amylase to liquefy a starch gel. Strength of the enzyme is measured by RVA units defined as the time in seconds required to stir plus the time it takes to allow the stirrer to fall a measured distance through a hot aqueous gel undergoing liquefaction.

9.14.2 Scope

This method is applicable to barley.

9.14.3 Apparatus

Rapid Visco™ Analyser apparatus, including one use RVA cups and paddles, as supplied by the manufacturer.

Sample Mill. Must produce meal with particle size distribution as follows; <500μm, 0-10%; >210 but <500μm, 25-40%; <210μm, 75-50%. The recommended instrument is the Perten 3100 Mill with 0.8mm sieve.

Automatic Pipette should be capable of delivering 25 ± 0.3ml.

Analytical balance accurate to at least 0.01g

9.14.4 Reagents

Distilled water

9.14.5 Method

— Start the RVA instrument by following the manufacturer’s instructions. Ensure the instrument has reached full operating temperature before being used.

— Grind a minimum 300g sample of whole grain using the designated mill. Sample to be “as is”.

 NOTE: the RVA will read “_ _ _” until it reaches the measuring temperature.

— Measure 25.0 +/- 0.1 ml water (distilled or deionised) from the dispensette into a new canister.

— Accurately weigh 4.00g (+/- 0.01g) of ground grain into a weighing vessel.

— Transfer the entire weighed sample onto the water surface in the canister (not the other way around). The sample should not be added to the water until just before the test occurs otherwise erroneous results may occur.

— Place the paddle into the canister and vigorously jog the blade through the sample up and down 10 times. Repeat the jogging action if any lumps remain on the water surface or adhere to the paddle.

— Place the paddle into the canister and firmly insert the paddle into the RVA paddle coupling on the instrument.

 NOTE: The paddle must be fully inserted into the coupling (firmly squeeze the front of the paddle against the back of the coupling) for proper functioning of the instrument.

— Make sure that the paddle turns freely in the canister and does not rub against the sides. If the paddle rubs it will give a higher than expected result.

— Initiate the measurement cycle by firmly depressing the blue motor tower of the instrument and immediately releasing it.
— On completion of the test, the tower will raise and the Stirring Number will be displayed at the front of the instrument. Record the Stirring number.

NOTE: The instrument will display time in seconds for the duration of the three-minute test and then display the Stirring Number at the completion of the test.

— Remove the canister with the insulating glove or tongs and discard.

CAUTION! The sample canister is hot at the end of the test.

9.14.6 References

American Association of Cereal Chemists Method – Weather Damage in grain: AACC 22-08, ICC 161 and Royal Australian Chemical Institute Methos - RACI 05-05

9.15 Germinative energy — Reference method

9.15.1 Definitions

This is the reference method for determination of the percentage of grains which can be expected to germinate fully if the sample is malted at the time of the test.

9.15.2 Scope

This method is applicable to barley.

9.15.3 Apparatus

- Petri dishes, 90mm
- Filter paper, white Whatman No.1, 85mm
- Pipette 4 ml and 8 ml
- Flat tray
- Cellotape
- Incubation chamber or germination cabinet (if available)

9.15.4 Reagents

Distilled water

9.15.5 Method

— Place two filter papers in the bottom of the petri dish and add precisely 4 ml of distilled water.

— Count 100 whole barley grains from the sample and place them on the paper so that each makes good contact.

— Cover the petri dish with its lid and ensure that loss of moisture is prevented by making a good seal using celotape or other measure.

— Place the petri dish on a tray in a dark germination cabinet or incubator set at 19 °C or on the surface of a bench under similar temperature and lighting conditions. It is important that the petri dish or any tray it sits on is flat.

At intervals of 24 hours and 48 hours from the beginning of the test, remove corns.
— Count the remaining barley grains that have not chitted after 48 hours.

— % Germinative Energy is calculated using the following formula = (100 – remaining unchitted grains).

— Report the results as a % rounded to the nearest whole number.

9.15.6 References

9.16 Germinative capacity rapid staining method — Reference method

9.16.1 Definitions

This is the reference method for determination of the percentage of living grains in a sample of barley using rapid staining.

9.16.2 Scope

This method is applicable to barley.

9.16.3 Apparatus

Scalpel or other apparatus for accurately sectioning grains longitudinally

Test tubes

Filter pump or source of air suction

Magnifying glass

9.16.4 Reagents

Distilled water

2,3,5-triphenyl tetrazolium chloride solution (10g/l). Follow the manufacturer’s instructions on dilution. Store the solution in a dark bottle to exclude light.

9.16.5 Method

— Separate 100 barley grains. Exclude any foreign material and broken grains.

— Cut the grain longitudinally to bisect the embryo, discarding one set of half corns.

— Place the remaining half corns in a test tube and cover with the tetrazolium solution at room temperature.

— Evacuate the tube to below 200mm Hg for 3 to 4 minutes and re introduce air to force the solution into the grains.

— Maintain the test tubes at 40°C for 30 minutes in a water bath.

— Drain the grains.

— Spread the grains on moist filter paper and examine using magnification.

— Classify the grains into:
— Completely coloured which are healthy living germs (X)

— These which are damaged but sufficiently intact to germinate – as a minimum the shoot and scutellum together with a little of the tissue between the shoot and root are stained (Y)

— Unstained germs or those less stained than the minimum described in Y above

— Calculate the germinative capacity using the following formula:

Germinative Capacity (%) = X + Y

— Report the results as a % rounded to the nearest whole number and state the method used in brackets e.g. GC = x% (stain)

9.16.6 References

9.17 Defective grains assessment — Reference method

9.17.1 Definitions

This describes the method of assessment of deliveries of barley for the various types of defective grains described in these barley Standards. The various defective grain types and their assessment methods are described in this method as follows:

<table>
<thead>
<tr>
<th>Count per 100 grains</th>
<th>Count per half litre</th>
<th>% by weight 100 grams</th>
<th>Count per entire load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shot or Sprouted*</td>
<td>Insect Damaged</td>
<td>Broken</td>
<td>Heat Damaged, Bin Burnt or Storage Mould</td>
</tr>
<tr>
<td>Dark Tipped</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Fungi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skinnings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Split or Cleaved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frost Damaged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Green or Sappy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* For Shot or Sprouted grain, GTA Standards specify both a RVA minimum and a Falling Number minimum. Please refer to the procedure for determining whether a RVA test or a Falling Number test is required during the field evaluation process which is detailed separately.

9.17.2 Scope

This method is applicable for all deliveries of barley.

9.17.3 Apparatus

Visual Recognition Standards

A 100 grain tray or mechanism capable of holding 100 grains

9.17.4 Reagents

Not applicable

9.17.5 Method

Sample to be “as is”.
For Defective grains with tolerances above zero, assessment is made on grain from the Grower Load Composite sample.

For nil tolerance defects, the tolerance (rejection of the load) can apply if the defect is detected at any stage of the delivery or testing process, including in the truckload before sampling, in the probe sample, in the half litre sample or during discharge into the receival hopper after assessment.

Grain should be examined for defects under conditions of good lighting. Instruments of magnification may be used to assist the determination of the level of visually defective grains present in the sample.

For those defects with a tolerance based on count in a 100 grain sample, a small sub sample should be drawn from the Grower Load Composite sample and placed on the 100 grain tray. Surplus grain should be removed from the tray when all 100 holes have been filled. Count the number of grains for the defect in question.

For those defects with a tolerance based on the number of grains in a half litre sample (Insect Damaged), the entire half litre sample is to be assessed. Count the number of grains for the defect in question.

For those defects with a tolerance based on % by weight in a 100 gram sample (Broken), a representative 100 gram sub sample should be drawn from the Grower Load Composite sample. Remove all Broken grain from the 100 gram sample and weigh.

Each grain should be examined to determine if it is classified as defective. Note one kernel may have more than one defect. Each defect type present on the grain is required to be counted.

The presence and level of defective grains can be assessed with the assistance of the GTA Approved photographic standards listed in Section 6 or objective measurement instruments where appropriate (refer for example Falling Number or Rapid Visco Analyser Reference Methods in Section 5).

Report all applicable results to the nearest 0.1% or nearest whole number per half litre whichever is applicable.

9.17.6 References

ISO 605:1991, Pulses — Determination of impurities, size, foreign odours, insects, and species and variety — Test methods

9.18 Contaminants assessment — Reference method

9.18.1 Definitions

This describes the method of assessment of deliveries of barley for the various types of Contaminants described in these barley Standards. The various contaminant types and their assessment methods are described in this method as follows:
<table>
<thead>
<tr>
<th>Length in cm per half litre</th>
<th>Count per half litre</th>
<th>% by Count</th>
<th>% by weight in half litre</th>
<th>Count per entire load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ryegrass Ergot</td>
<td>All Weed Seed Types except 2 and 6*</td>
<td>Varietal Purity</td>
<td>Small Foreign Seeds</td>
<td>Type 2 weed seeds</td>
</tr>
<tr>
<td></td>
<td>Coloured Aleurone Layer*</td>
<td>Foreign Material</td>
<td></td>
<td>Type 6* weed seeds</td>
</tr>
<tr>
<td>Stored Grain Insects and Pea Weevil - Dead</td>
<td>Stored Grain Insects and Pea Weevil - Live</td>
<td>Cereal Ergot</td>
<td></td>
<td>Cereal Ergot</td>
</tr>
<tr>
<td>Field Insects Sitona Weevil – Live or Dead</td>
<td>Field Insects All Others – Live or Dead</td>
<td>Smut – Ball & Covered</td>
<td></td>
<td>Smut – Ball & Covered</td>
</tr>
<tr>
<td>Field Insects All Others – Live or Dead</td>
<td>Snails</td>
<td>Objectionable Material</td>
<td></td>
<td>Objectionable Material</td>
</tr>
<tr>
<td>Snails</td>
<td>Sand</td>
<td></td>
<td></td>
<td>Sand</td>
</tr>
<tr>
<td>Earth</td>
<td>Wild Oats / Wild Radish</td>
<td></td>
<td></td>
<td>Wild Oats / Wild Radish</td>
</tr>
<tr>
<td>Weight in gram per half litre</td>
<td>Wheat, Cereal Rye, Triticale, Cultivated Oats, Rice (Foreign Grain)</td>
<td>Chemicals not Approved for Barley</td>
<td></td>
<td>Chemicals not Approved for Barley</td>
</tr>
<tr>
<td>Loose Smut</td>
<td>Six row barley</td>
<td>Foreign Seed Pods</td>
<td></td>
<td>Foreign Seed Pods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barley Not of the Current Season</td>
<td></td>
<td>Barley Not of the Current Season</td>
</tr>
</tbody>
</table>

*Note – Type 6 weed seeds and Coloured Aleurone Layer are to be counted per half litre or per the entire load, depending on the grade

5.18.2 Scope

This method is applicable for all deliveries of barley.

5.18.3 Apparatus

Combination of two screens – top 2.50mm top screen and 2.20mm bottom screen with the following specifications:

— 300mm diameter discs x 0.8mm stainless steel, perforated with 25.40mm x 2.50mm slots, hit and miss on ends with 2.77mm end bar and 2.0mm side bar.

— 300mm diameter discs x 0.8mm stainless steel, perforated with 25.40mm x 2.20mm slots, hit and miss on ends with 2.77mm end bar and 2.0mm side bar.

— 2.50mm slot width as assessed by an Engineers Pin Gauge is to be 2.50 mm ± 0.01 mm. Pin Gauge, being 2.51mm and 2.49, needs to have a valid calibration certificate.

— 2.20mm slot width as assessed by an Engineers Pin Gauge is to be 2.20 mm ± 0.01 mm. Pin Gauge, being 2.21mm and 2.19, needs to have a valid calibration certificate.

— Compliance testing shall be undertaken by randomly selecting 74 slots and measuring using the above Gauge. 0 to 25 slots is an acceptable failure rate. Refer to separate procedure.

Analytical balance accurate to at least 0.01g
— Visual Recognition Standards

Mesh Screen (optional)

9.18.4 Reagents

Not applicable.

9.18.5 Method

— Sample to be “as is”.

— For contaminants with tolerances above zero, assessment is made on the entire half litre sample on grain above and below the 2.50 mm and 2.20 mm screens after the Unmillable Material assessment (Screenings) has been conducted.

— For nil tolerance contaminants, the tolerance (rejection of the load) may apply if the contaminant is detected at any stage of the delivery or testing process, including in the truckload before sampling, in the probe sample, in the half litre sample or during discharge into the receival hopper after assessment.

— Following sieving, the grain remaining on the top of all screens and in the bottom pan should be examined under conditions of good lighting. There is no time restriction for this assessment. If contaminants are found, they shall be removed by hand and assessed in accordance with the tolerance prescribed in these Standards under 9.18.1.

— Seed contaminants are to be assessed using the appropriate visual assessment method and in accordance with the tolerance prescribed in these Standards under 9.18.1.

— Small Foreign Seeds (SFS) are assessed in the bottom tray (catchpan). These may need to be physically removed from all non-SFS material in the bottom tray. Alternatively, to assist in separating SFS from non-SFS material in the bottom tray, a mesh screen may be used. Place the sample over the mesh screen over a white tray and gentle shake. SFS tend to remain on top of the mesh screen. Physical hand separation of SFS may still be required using this method.

— Seed Pods are to be assessed as a count per half litre where greater than 5mm in diameter. Where seed pods are not listed in the Standards and are 5mm or less in diameter, they are to be measured as part of Foreign Material. Any seed pods detected must not be opened. Pods refers to whole pods or part thereof.

— Where reference material is not available, other contaminants should be assessed by reference to the Definitions of those parameters.

— For assessment of pickling compounds and chemicals not approved for grain, all deliveries are to be accompanied by a signed declaration referring to its chemical status. Where the receiving agent believes that the visual appearance and/or odour of grain suggests that it has been treated with a non-approved chemical, the grain is not to be received until the representative “as received” sample has been tested by an approved independent laboratory and the presence or absence of non-approved chemicals ascertained.

— Report results as follows:

 Count per half litre – nearest whole number
 Length in cm per half litre – nearest 0.1 cm
 Percentage by wt per half litre – nearest 0.1%
 Percentage by count per half litre – nearest 1%
 Weight in grams per half litre – nearest 0.1 g

9.18.6 References

ISO 605:1991, Pulses — Determination of impurities, size, foreign odours, insects, and species and variety — Test methods
9.19 Varietal declaration procedure

9.19.1 Definitions
This is the recommended procedure for determining the variety of the load presented for delivery.

9.19.2 Scope
This procedure is applicable to all barley deliveries.

9.19.3 Apparatus
Not applicable.

9.19.4 Reagents
Not applicable.

9.19.5 Method
For the purposes of this Standard and delivery of grain, classification is dependant on the segregations available at the point of delivery and the highest grade classification available for that variety.

— Deliverer declares the variety(s) in the load tendered for delivery. It is recommended that the grower signs a Declaration Form and provide this to the deliverer for provision to the Receival Agent. This Declaration Form should at a minimum contain the grower details and the variety(s) of the load.

— If the declared varietal composition or paddock where the grain was grown is different for each unit tendered for delivery, or more than one variety is commingled in each delivery unit, then a separate assessment of each unit must be conducted.

— Note that depending on the varietal declaration and the procedures of the Receival Agent, a sample of the load may be taken and sent to a laboratory for assessment of the variety within the sample. In this instance sample is to be “as is”.

— Report the variety as per the following procedure using the applicable code as defined by the Receival Agent.

Load is declared as one variety only

— Where the load is declared as being of the one variety only, review the applicable maximum grade classification of that variety.

— Based on the quality results, grade the load and record the declared variety.

Load is declared as multiple varieties of the same grade classification status

Malt varieties:

— Where the load is declared as being of more than the one variety, unless the Varietal Purity specifications of minimum 95% can be met, the load cannot be classified as a malt grade. If the Varietal Purity specifications have been met for the malt grades, it is recommended the Receival Agent implement some form of varietal purity testing.

Based on the quality results, grade the load and record the variety with the greatest percentage in the load (i.e., the variety that was nominated to meet the Varietal Purity specifications).
Feed varieties:
— Where the load is declared as being of more than one feed variety, the load can only be classified as a feed grade
— Based on the quality results, grade the load and record the variety with the greatest percentage in the load

Load is declared as multiple varieties of different grade classification status
— Where the load is declared as containing one or more of a malt and a feed variety, the load can only be classified as a malt grade if the varietal purity minimum of 95% is met.
— Based on the quality results, grade the load and record the variety with the greatest percentage in the load.

9.19.6 References
ISO 605:1991, Pulses — Determination of impurities, size, foreign odours, insects, and species and variety — Test methods

9.20 Screen slot size compliance procedure

9.20.1 Definition
This is the recommended procedure for determining whether the screen slot size complies with the Standard and relevant legislation.

9.20.2 Scope
This procedure is applicable to all barley deliveries and screens used for assessment purposes.

9.20.3 Apparatus
Engineers Pin Gauge, 2.19mm and 2.21mm, with a valid calibration certificate
Engineers Pin Gauge, 2.49mm and 2.51mm, with a valid calibration certificate
Checking template (if available)
Calibration sticker

9.20.4 Reagents
Not applicable.

9.20.5 Method
— Compliance testing shall be undertaken by randomly selecting 74 slots and measuring using the above Gauges.
— Place screen or disc with the smooth surface up so that it sits horizontally.
— Examine the screen for any damage to the slots. If there is any damage affecting the accuracy of the slots or the screen immediately reject the screen.
— Ensure the screen is labelled with the correct slot/hole size, the commodity that is normally tested on the screen (barley) and the screen identification number.
— For screen accuracy, place relevant checking template (testing 74 slots) centred as much as possible (use the handle as a guide) on top of screen and rotate so that all the holes line up. For
discs place the disc on top of relevant checking template, rotate disc until all the holes line up then clamp with bulldog clips.

— Select the appropriate GO/NO GO GAUGE for the screen/disk to be tested i.e., for barley, the barley gauges are 2.19 – 2.21 (2.20mm) and 2.49 – 2.51 (2.50mm).

— Hold the GO/NO GO GAUGE in the middle.

— Place an end of the GO/NO GO GAUGE on the middle of a slot which lines up with a slot on the template so that is perpendicular to the slot.

— Release the GO/NO GO GAUGE. Gauges are not to be pushed through slots.

— If the GREEN (GO) end does not go through then the slot fails. Record this event and move on to the next slot.

— If the GREEN (GO) end does go through then the slot size is greater than the nominated size of the GREEN end. Proceed to test the slot with the RED (NO GO) end as follows:

— If the RED (NO GO) end does not go through then the slot size is less than the nominated size of the RED end and greater than the nominated size of the Green End, hence the slot is within the accepted range and passes.

— If the RED (NO GO) end does go through then the slot fails. Record this event and move on to the next slot.

— Proceed to test all 74 slots, recording each failure.

— Repeat the above process for both screens i.e., the 2.50mm and 2.20mm screen.

— 0 to 25 slots is an acceptable failure rate.

— If the screen meets the tolerances:

— Record results on the equipment record

— Affix the relevant calibration sticker to the side of the sieve (not the catch pan)

9.20.6 References

Not applicable.

Mature barley in field Barley grains
Annex A
(normative)

Determination of impurities, size, foreign odours, insects, and species and variety

These shall be determined in accordance with ISO 605, Pulses — Determination of impurities, size, foreign odours, insects, and species and variety — Test methods
Annex B
(normative)

Determination of moisture content

Moisture content shall be determined in accordance with the following standards:

— ISO 711, *Cereals and cereal products — Determination of moisture content (Basic reference method)*

— ISO 712, *Cereals and cereal products — Determination of moisture content — Routine reference method*
Annex C
(informative)

Model certificate of conformity with standards for farm produce

1. **Trader:**
 - Certificate of conformity with the Community marketing standards applicable to fresh fruits and vegetables
 - No. ……………………………
 - (This certificate is exclusively for the use of inspection bodies)

2. **Packer identified on packaging (if other than trader)**

3. **Inspection body**

4. **Place of inspection/country of origin (‘)**

5. **Region or country of destination**

6. **Identifier of means of transport**

7. **Internal**
 - **Import**
 - **Export**

8. **Packages (number and type)**

9. **Type of product (variety if the standards specify)**

10. **Quality Class**

11. **Total net weight in kg**

12. The consignment referred to above conforms, at the time of issue, with the Community standards in force, vide:

 CD/K/457:2010, Barley — Specification and grading

 Customs office foreseen ………………………………… Place and date of issue …………………………………

 Valid until (date): ………

 Signatory (name in block letters): ………………………………………………………………………………………

 Signature Seal of competent authority

13. **Observations:**

 (‘) Where the goods are being re-exported, indicate the origin in box 9.
Annex D
(normative)

Barley — Fact sheets

D.1 Hordeum bulbosum

Authority L.
Family Liliopsida:Commelinidae:Cyperales:Gramineae
Synonyms Critesion bulbosum (L.) Á. Löve 1984, Hordeum bulbosum subsp. nodosum (L.) B.R. Baum, Hordeum nodosum L.
Common names Bulbous barley, Bulbous wild barley, Orge bulbeuse, Kurram, Kurraym, Subbeil, Qurram, Barley grass, Wild barley, Sha’ir barri.

Description
A heavy tillering grass reaching a height of 80-150 cm. It develop tillers from bulbils at or below the soil surface.

Uses
The grain is mainly used for malting and as a food source.

Growing period
Perennial. The seeds germinate very quickly after planting, often with only 20-30 mm of rainfall.

Further information
Bulbous barley is native of the Mediterranean region. Average dry matter yields for fodder is 0.9-2.6 t/ha. Seed yields may be 200-400 kg/ha.

D.2 Hordeum vulgare

Authority L.
Family Liliopsida:Commelinidae:Cyperales:Gramineae
Synonyms H. sativum
Common names barley, food barley, feed barley, malting barley, orge, cebada, damai, cevada, gerste, gebs, garbu, segem, schair, sheko, bongo.

Editor Ecocrop code 1232

Description
A freely tillering cultivated grass and cereal crop reaching a height of 50-100 cm. As with wheat and oats, barley also presents two types of root systems. In the first, the seedling roots develop from
germination to the tillering stage; in the second, which starts at tillering, the secondary crown roots, or adventitious roots, appear. These will serve to anchor the plant, and to provide it with water and nutrients. The depth they reach will depend on the hydric condition of the soil, its texture and structure, external and internal temperatures, and on the genetic make up of the variety. The stems of the barley plant are erect and made up of 5 to 7 hollow, cylindrical internodes or joints, separated by the nodes, which bear the leaves. As in all Gramineae, the leaves are placed opposite their neighbours along the stem. The leaves are linear lanceolate and formed of sheath, blade, auricles and ligule. The sheaths surround the stem completely. The ligule, and especially the auricles, distinguish barley from other cereal grains: they are glabrous, envelop the stem and can be pigment with anthocyanins. Flowers-spikes: the last internode of the stem extends as a rachis, which bears the spicules alternating on its nodes. Spikes of distich barleys do not have a terminal spikele as do those of wheat. Spikes can be awned, mutic (blunt) or hooded, and also can be smooth or toothed. The spikes can have two or six rows of grain, depending on the fertility of the lateral spikes. The rachis has 10 to 30 nodes, so the ears of six-row barleys can have from 25 up to 60 grains, and two-row barleys 25 to 30. The fruit is an oval, ridged caryopsis with rounded ends. The spike may be long or short, according to the plant type, but it always has several glumes with filiform awns that may diverge. Seeds are generally covered, with the palea and the lemma adhered to them, or can be open. Grains can be white in colour, blue, black, etc. barley is predominantly autogamous.

Uses

In the traditional areas, most barley is use for animal feed (half of the world's barley production). In the non-traditional areas, barley's principal use is as food, followed by animal feed and use as raw material for the malting industry. Pearl barley (used in soups, or fed to live stock) is the decorticated caryopsis, while barley that is allowed to germinate and is then dehydrated is called malt. A very nourishing drink made from the latter can be used as a substitute for coffee. barley is also used commercially in the making of beer and whiskey. The cereal is prepared for eating by boiling or parching the whole grain. It can then be ground for gruel or made into flour for baking. barley can also be grown as a hay crop. The caryopsis is used to prepare decoctions and fluid extract. It has nutritive, emollient and anticatarrhal properties.

Killing temperature

The main climatic mishap is frost damage to the seedlings, when the death of many plants can drastically thin out the crop. At the seedling stage, barley is more susceptible to freezing conditions than wheat. The minimum temperature for germination occurs between 3-4°C, the optimal temperature being about 20°C, and the maximum temperature between 28-30°C.

Growing period

Annual grass, can be harvested after 90-120 days for spring varieties, and after 180-240 days for winter varieties.

Further information

Barley is grown from 70°N in Europe to arid regions near the Sahara and up to 4700 m in elevation in the Himalayas. In the tropics, the plant can normally only be successfully grown at elevations above 1800 m and in moderate to low humidity. Geographically, barley is the most widely distributed of all cereal crops. The crop is cultivated from Alten in Norway (70° N), inside the Arctic Circle, to tropical Timbuktu in Mali at around 17°N. In the Americas, it is grown from latitude 65°N in Alaska Nilan, 1964 to 53°S in southern Chile. The photosynthesis pathway is C3 I. Yields in the United States vary between 1-5 t/ha while the average yields in Africa are about 1.2 t/ha. Heavy impermeable soils and light acid soils are unsuitable for barley.
Barley — Codex, EU and USA pesticide residue limits

Users are advised that international regulations and permissible Maximum Residue Levels (MRL) frequently change. Although this International MRL Database is updated frequently, the information in it may not be completely up-to-date or error free. Additionally, commodity nomenclature and residue definitions vary between countries, and country policies regarding deferral to international standards are not always transparent. This database is intended to be an initial reference source only, and users must verify any information obtained from it with knowledgeable parties in the market of interest prior to the sale or shipment of any products. The developers of this database are not liable for any damages, in whole or in part, caused by or arising in any way from user’s use of the database.

Results Key
MRL values in (italics) are more restrictive than US
--- indicates no MRL value is established.
Cod, EU, etc. indicates the source of the MRL and EXP means the market defers to the exporting market.
All numeric values listed are in parts per million (ppm), unless otherwise noted

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Cod</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>2</td>
<td>--</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Acetochlor</td>
<td>--</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>0.1</td>
<td>--</td>
<td>0.3</td>
</tr>
<tr>
<td>Benoxacor</td>
<td>0.01</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Beta-cyfluthrin</td>
<td>0.15</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>0.05</td>
<td>--</td>
<td>0.05</td>
</tr>
<tr>
<td>Captan</td>
<td>0.05</td>
<td>--</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Carboxin</td>
<td>0.2</td>
<td>--</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Carfentrazone-ethyl</td>
<td>0.1</td>
<td>--</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Chlorpyrifos-methyl</td>
<td>6</td>
<td>--</td>
<td>(3)</td>
</tr>
<tr>
<td>Chlorsulfuron</td>
<td>0.1</td>
<td>--</td>
<td>0.1</td>
</tr>
</tbody>
</table>

1. European Union does not maintain a specific MRL for the 2,4-D/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its "Cereals" group.
2. MRL applies to indirect or inadvertent residues only. Does not apply to corn, sorghum, rice, or wheat, grain.
3. United States does not maintain a specific MRL for the Captan/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its "Grain, cereal, group 15" group.
4. European Union does not maintain a specific MRL for the Captan/Barley, grain combination, but does maintain an MRL of 0.02 PPM for its "Cereals" group.
5. European Union does not maintain a specific MRL for the Carboxin/Barley, grain combination, but does maintain an MRL of 0.01 PPM for its "Cereals" group.
6. United States does not maintain a specific MRL for the Carfentrazone-ethyl/Barley, grain combination, but does maintain an MRL of 0.1 PPM for its "Grain, cereal, group 15" group.
7. European Union does not maintain a specific MRL for the Carfentrazone-ethyl/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its "Cereals" group.
8. European Union does not maintain a specific MRL for the Chlorpyrifos-methyl/Barley, grain combination, but does maintain an MRL of 3 PPM for its "Cereals" group.
9. European Union does not maintain a specific MRL for the Chlorsulfuron/Barley, grain combination, but does maintain an MRL of 0.1 PPM for its "Cereals" group.
<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>US</th>
<th>Cod</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clopyralid</td>
<td>3</td>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td>Cloquintocet-mexyl</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryolite</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyfluthrin</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deltamethrin</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

10. Codex does not maintain a specific MRL for the Deltamethrin/Barley, grain combination, but does maintain an MRL of 2 PPM for its "Cereal Grains" group.

11. European Union does not maintain a specific MRL for the Deltamethrin/Barley, grain combination, but does maintain an MRL of 2 PPM for its "Cereals" group.

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>US</th>
<th>Cod</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dicamba</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diclofop-Methyl</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12. European Union does not maintain a specific MRL for the Diclofop-Methyl/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its "Cereals" group.

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>US</th>
<th>Cod</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difenonconazole</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13. European Union does not maintain a specific MRL for the Endosulfan/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its "Cereals" group.

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>US</th>
<th>Cod</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPTC</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14. United States does not maintain a specific MRL for the EPTC/Barley, grain combination, but does maintain an MRL of 0.1 PPM for its "Grain Crops" group.

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>US</th>
<th>Cod</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethephon</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15. European Union does not maintain a specific MRL for the Ethephon/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its "Cereals" group.

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>US</th>
<th>Cod</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etridiazole</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16. European Union does not maintain a specific MRL for the Etridiazole/Barley, grain combination, but does maintain an MRL of 0.1 PPM for its "Cereals" group.

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>US</th>
<th>Cod</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenoxaprop-Ethyl</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17. European Union does not maintain a specific MRL for the Fenoxaprop-Ethyl/Barley, grain combination, but does maintain an MRL of 0.01 PPM for its "Cereals" group.

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>US</th>
<th>Cod</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florasulam</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18. United States does not maintain a specific MRL for the Florasulam/Barley, grain combination, but does maintain an MRL of 0.02 PPM for its "Grain, cereal, group 15" group.
19. Codex does not maintain a specific MRL for the Flufoxonil/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its "Cereal Grains" group.

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Cod 21</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flufoxonil</td>
<td>0.5</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

20. United States does not maintain a specific MRL for the Glyphosate/Barley, grain combination, but does maintain an MRL of 30 PPM for its "Grain, cereal, group 16" group.

21. Codex does not maintain a specific MRL for the Glyphosate/Barley, grain combination, but does maintain an MRL of 30 PPM for its "Cereal Grains" group.

22. European Union does not maintain a specific MRL for the Imazalil/Barley, grain combination, but does maintain an MRL of 0.02 PPM for its "Cereals" group.

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Cod</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imazalil</td>
<td>0.1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Imazamethabenz</td>
<td>0.1</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

23. Codex does not maintain a specific MRL for the Imidacloprid/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its "Cereal Grains" group.

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Cod 23</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imidacloprid</td>
<td>0.05</td>
<td>0.05</td>
<td>0.1</td>
</tr>
</tbody>
</table>

24. Codex does not maintain a specific MRL for the Inorganic bromide resulting from fumigation/Barley, grain combination, but does maintain an MRL of 50 PPM for its "Cereal Grains" group.

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Cod 24</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic bromide resulting from fumigation</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

25. European Union does not maintain a specific MRL for the Inorganic bromide resulting from fumigation/Barley, grain combination, but does maintain an MRL of 50 PPM for its "Cereals" group.

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Cod 25</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipconazole</td>
<td>0.01</td>
<td>--</td>
<td>0.01</td>
</tr>
</tbody>
</table>

26. United States does not maintain a specific MRL for the Ipconazole/Barley, grain combination, but does maintain an MRL of 0.01 PPM for its "Grain, cereal, group 15" group.

27. European Union does not maintain a specific MRL for the Ipconazole/Barley, grain combination, but does maintain an MRL of 0.01 PPM for its "Cereals" group.

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Cod 26</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambda Cyhalothrin</td>
<td>0.05</td>
<td>--</td>
<td>0.05</td>
</tr>
<tr>
<td>Malathion</td>
<td>8</td>
<td>--</td>
<td>8</td>
</tr>
</tbody>
</table>

28. European Union does not maintain a specific MRL for the Malathion/Barley, grain combination, but does maintain an MRL of 8 PPM for its "Cereals" group.

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Cod 27</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mancozeb</td>
<td>5</td>
<td>(1)</td>
<td>(2)</td>
</tr>
</tbody>
</table>

29. The MRL is established for the sum of dithiocarbamates.

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Cod 28</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCPA</td>
<td>1</td>
<td>--</td>
<td>(0.05)</td>
</tr>
</tbody>
</table>

30. European Union does not maintain a specific MRL for the MCPA/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its "Cereals" group.

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Cod 29</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mefenpyr-diethyl</td>
<td>0.05</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

31. Codex does not maintain a specific MRL for the Metalaxyl/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its "Cereal Grains" group.

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Cod 30</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metalaxyl</td>
<td>0.2</td>
<td>(0.05)</td>
<td>(0.05)</td>
</tr>
</tbody>
</table>

32. Codex does not maintain a specific MRL for the Metalaxyl/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its "Cereal Grains" group.
<table>
<thead>
<tr>
<th>Product</th>
<th>US</th>
<th>Cod</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metalaxyl/Barley</td>
<td>2.5</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td></td>
<td>(0.1)</td>
<td></td>
</tr>
<tr>
<td>Metconazole</td>
<td>2.5</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td></td>
<td>(0.1)</td>
<td></td>
</tr>
<tr>
<td>Methomyl and Thiodicarb (sum of methomyl and thiodicarb expressed as methomyl)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methomyl/Barley</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td></td>
<td>(0.05)</td>
<td></td>
</tr>
<tr>
<td>Methyl Parathion</td>
<td>1</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td></td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>Metribuzin/Barley</td>
<td>0.8</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td></td>
<td>(0.1)</td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl/Barley</td>
<td>0.4</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td></td>
<td>(0.05)</td>
<td></td>
</tr>
<tr>
<td>Paraquat dichloride</td>
<td>0.05</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td></td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>Phosphine/Barley</td>
<td>0.1</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td></td>
<td>(0.2)</td>
<td></td>
</tr>
<tr>
<td>Picloram/Barley</td>
<td>0.5</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td></td>
<td>(0.2)</td>
<td></td>
</tr>
<tr>
<td>Pinoxaden/Barley</td>
<td>0.9</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Piperonyl Butoxide</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Propiconazole/Barley</td>
<td>0.3</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td></td>
<td>(0.2)</td>
<td></td>
</tr>
<tr>
<td>Prothioconazole</td>
<td>0.35</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td></td>
<td>(0.3)</td>
<td></td>
</tr>
<tr>
<td>Pyraclostrobin/Barley</td>
<td>1.4</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td></td>
<td>(0.3)</td>
<td></td>
</tr>
<tr>
<td>Pyrasulfotole/Barley</td>
<td>0.02</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td></td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Pyrethrins/Barley</td>
<td>3</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td></td>
<td>(0.3)</td>
<td></td>
</tr>
</tbody>
</table>
44. Codex does not maintain a specific MRL for the Pyrethrins/Barley, grain combination, but does maintain an MRL of 0.3 PPM for its “Cereal Grains” group.

45. European Union does not maintain a specific MRL for the Pyrethrins/Barley, grain combination, but does maintain an MRL of 3 PPM for its “Cereals” group.

<table>
<thead>
<tr>
<th></th>
<th>US 46</th>
<th>Cod</th>
<th>EU 47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyriproxyfen</td>
<td>1.1</td>
<td>---</td>
<td>(0.05)</td>
</tr>
</tbody>
</table>

46. United States does not maintain a specific MRL for the Pyriproxyfen/Barley, grain combination, but does maintain an MRL of 1.1 PPM for its “Grain, cereal, group 15” group.

47. European Union does not maintain a specific MRL for the Pyriproxyfen/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its “Cereals” group.

<table>
<thead>
<tr>
<th></th>
<th>US 48</th>
<th>Cod</th>
<th>EU 49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinclorac</td>
<td>2</td>
<td>---</td>
<td>(0.05)</td>
</tr>
</tbody>
</table>

48. European Union does not maintain a specific MRL for the Quinclorac/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its “Cereals” group.

<table>
<thead>
<tr>
<th></th>
<th>US 50</th>
<th>Cod</th>
<th>EU 51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinetoram</td>
<td>0.04</td>
<td>---</td>
<td>0.05</td>
</tr>
</tbody>
</table>

49. This group MRL does not apply to rice and sorghum. United States does not maintain a specific MRL for the Spinetoram/Barley, grain combination, but does maintain an MRL of 0.04 PPM for its “Grain, cereal, group 15” group.

50. European Union does not maintain a specific MRL for the Spinetoram/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its “Cereals” group.

<table>
<thead>
<tr>
<th></th>
<th>US 52</th>
<th>Cod</th>
<th>EU 53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinosad</td>
<td>1.5</td>
<td>---</td>
<td>(1)</td>
</tr>
</tbody>
</table>

51. United States does not maintain a specific MRL for the Spinosad/Barley, grain combination, but does maintain an MRL of 1.5 PPM for its “Grain, cereal, group 15” group.

52. Codex does not maintain a specific MRL for the Spinosad/Barley, grain combination, but does maintain an MRL of 1 PPM for its “Cereal Grains” group.

53. European Union does not maintain a specific MRL for the Spinosad/Barley, grain combination, but does maintain an MRL of 1 PPM for its “Cereals” group.

<table>
<thead>
<tr>
<th></th>
<th>US 54</th>
<th>Cod</th>
<th>EU 55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfentrazone</td>
<td>0.1</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

54. MRL applies to postharvest use only.

55. Codex does not maintain a specific MRL for the Sulfentrazone/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its “Cereal Grains” group.

56. European Union does not maintain a specific MRL for the Sulfentrazone/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its “Cereals” group.

<table>
<thead>
<tr>
<th></th>
<th>US 56</th>
<th>Cod</th>
<th>EU 57</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCMTB</td>
<td>0.1</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

57. European Union does not maintain a specific MRL for the TCMTB/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its “Cereal Grains” group.

<table>
<thead>
<tr>
<th></th>
<th>US 58</th>
<th>Cod</th>
<th>EU 59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thifensulfuron-methyl</td>
<td>0.05</td>
<td>---</td>
<td>0.05</td>
</tr>
</tbody>
</table>

58. European Union does not maintain a specific MRL for the Thifensulfuron-methyl/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its “Cereals” group.

<table>
<thead>
<tr>
<th></th>
<th>US 60</th>
<th>Cod</th>
<th>EU 61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiazydim</td>
<td>0.02</td>
<td>---</td>
<td>0.02</td>
</tr>
</tbody>
</table>

59. European Union does not maintain a specific MRL for the Thiazydim/Barley, grain combination, but does maintain an MRL of 0.02 PPM for its “Cereals” group.
<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Cod 60</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triadimenol</td>
<td>0.05</td>
<td>0.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

60. This MRL is established for the sum of triadimenol and triadimefon.

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Cod</th>
<th>EU 61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triasulfuron</td>
<td>0.02</td>
<td>---</td>
<td>0.05</td>
</tr>
</tbody>
</table>

61. European Union does not maintain a specific MRL for the Triasulfuron/Barley, grain combination, but does maintain an MRL of 0.05 PPM for its "Cereals" group.

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Cod</th>
<th>EU 62</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tribenuron Methyl</td>
<td>0.05</td>
<td>---</td>
<td>0.01</td>
</tr>
</tbody>
</table>

62. European Union does not maintain a specific MRL for the Tribenuron Methyl/Barley, grain combination, but does maintain an MRL of 0.01 PPM for its "Cereals" group.

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Cod</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trifloxystrobin</td>
<td>0.05</td>
<td>0.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Cod</th>
<th>EU 63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trifluralin</td>
<td>0.05</td>
<td>---</td>
<td>1.0</td>
</tr>
</tbody>
</table>

63. European Union does not maintain a specific MRL for the Trifluralin/Barley, grain combination, but does maintain an MRL of 1.0 PPM for its "Cereals" group.

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Cod</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triticonazole</td>
<td>0.05</td>
<td>---</td>
<td>0.01</td>
</tr>
</tbody>
</table>

63. European Union does not maintain a specific MRL for the Triticonazole/Barley, grain combination, but does maintain an MRL of 0.01 PPM for its "Cereals" group.

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Cod</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc phosphide</td>
<td>0.05</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Annex F
(informative)

Sieves for assessing dockage and grading factors

<table>
<thead>
<tr>
<th>Type</th>
<th>Sieve name</th>
<th>Hole size (millimetres)</th>
<th>Manufacturer's designation (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round-hole</td>
<td>No. 4.5</td>
<td>1.79</td>
<td>4½/64</td>
</tr>
<tr>
<td></td>
<td>No. 5</td>
<td>1.98</td>
<td>5/64</td>
</tr>
<tr>
<td></td>
<td>No. 5.5</td>
<td>2.18</td>
<td>5½/64</td>
</tr>
<tr>
<td></td>
<td>No. 6</td>
<td>2.38</td>
<td>6/64</td>
</tr>
<tr>
<td></td>
<td>No. 6.5</td>
<td>2.58</td>
<td>6½/64</td>
</tr>
<tr>
<td></td>
<td>No. 7</td>
<td>2.78</td>
<td>7/64</td>
</tr>
<tr>
<td></td>
<td>No. 7.5</td>
<td>2.98</td>
<td>7½/64</td>
</tr>
<tr>
<td></td>
<td>No. 8</td>
<td>3.18</td>
<td>8/64</td>
</tr>
<tr>
<td></td>
<td>No. 8.5</td>
<td>3.37</td>
<td>8½/64</td>
</tr>
<tr>
<td></td>
<td>No. 9</td>
<td>3.57</td>
<td>9/64</td>
</tr>
<tr>
<td></td>
<td>No. 10</td>
<td>3.97</td>
<td>10/64</td>
</tr>
<tr>
<td></td>
<td>No. 11</td>
<td>4.37</td>
<td>11/64</td>
</tr>
<tr>
<td></td>
<td>No. 12</td>
<td>4.76</td>
<td>12/64</td>
</tr>
<tr>
<td></td>
<td>No. 14</td>
<td>5.56</td>
<td>14/64</td>
</tr>
<tr>
<td></td>
<td>No. 15</td>
<td>5.95</td>
<td>15/64</td>
</tr>
<tr>
<td></td>
<td>No. 16</td>
<td>6.35</td>
<td>16/64</td>
</tr>
<tr>
<td></td>
<td>No. 17</td>
<td>6.75</td>
<td>17/64</td>
</tr>
<tr>
<td></td>
<td>No. 18</td>
<td>7.14</td>
<td>18/64</td>
</tr>
<tr>
<td></td>
<td>No. 20</td>
<td>7.94</td>
<td>20/64</td>
</tr>
<tr>
<td></td>
<td>No. 21</td>
<td>8.33</td>
<td>21/64</td>
</tr>
<tr>
<td></td>
<td>No. 22</td>
<td>8.73</td>
<td>22/64</td>
</tr>
<tr>
<td></td>
<td>No. 24</td>
<td>9.52</td>
<td>24/64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Sieve name</th>
<th>Hole size (millimetres)</th>
<th>Manufacturer's designation (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slotted</td>
<td>No. 3</td>
<td>1.19 x 7.94</td>
<td>3/64 x 5/16</td>
</tr>
<tr>
<td></td>
<td>No. 4.5</td>
<td>1.79 x 12.70</td>
<td>4½/64 x 1/2</td>
</tr>
<tr>
<td></td>
<td>No. 5</td>
<td>1.98 x 19.05</td>
<td>5/64 x 3/4</td>
</tr>
<tr>
<td></td>
<td>No. 6</td>
<td>2.38 x 19.05</td>
<td>6/64 x 3/4</td>
</tr>
<tr>
<td></td>
<td>No. 8</td>
<td>3.18 x 19.05</td>
<td>8/64 x 3/4</td>
</tr>
<tr>
<td></td>
<td>No. 9</td>
<td>3.57 x 19.05</td>
<td>9/64 x 3/4</td>
</tr>
<tr>
<td></td>
<td>No. 11</td>
<td>4.37 x 19.05</td>
<td>11/64 x 3/4</td>
</tr>
<tr>
<td></td>
<td>No. 12</td>
<td>4.76 x 19.05</td>
<td>13/64 x 3/4</td>
</tr>
<tr>
<td></td>
<td>No. .064</td>
<td>1.60 x 9.53</td>
<td>0.064 x 3/8</td>
</tr>
<tr>
<td></td>
<td>No. .028</td>
<td>0.71 x 11.90</td>
<td>0.028 x 15/32</td>
</tr>
<tr>
<td></td>
<td>No. .032</td>
<td>0.81 x 11.90</td>
<td>0.032 x 15/32</td>
</tr>
<tr>
<td></td>
<td>No. .035</td>
<td>0.89 x 11.90</td>
<td>0.035 x 15/32</td>
</tr>
<tr>
<td></td>
<td>No. .038</td>
<td>0.96 x 11.90</td>
<td>0.038 x 15/32</td>
</tr>
<tr>
<td></td>
<td>No. .040</td>
<td>1.02 x 11.90</td>
<td>0.040 x 15/32</td>
</tr>
</tbody>
</table>

| Buckwheat | No. 5 | triangle with 1.98 mm inscribed circle | triangle with 0.078 mm inscribed circle |
| | No. 6 | triangle with 2.26-mm inscribed circle | triangle with 0.089-inch inscribed circle |

Wire	No. 3 x 16	3 x 16 mesh per 25.4 mm	3 x 16 wire mesh per inch
	No. 4 x 14	4 x 14 mesh per 25.4 mm	4 x 14 wire mesh per inch
	No. 10 x 10	10 x 10 mesh per 25.4 mm	10 x 10 wire mesh per inch
	No. 9 x 9	9 x 9 mesh per 25.4 mm	9 x 9 wire mesh per inch